Nat Struct Mol Biol
November 2023
To understand how the nucleosome remodeling and deacetylase (NuRD) complex regulates enhancers and enhancer-promoter interactions, we have developed an approach to segment and extract key biophysical parameters from live-cell three-dimensional single-molecule trajectories. Unexpectedly, this has revealed that NuRD binds to chromatin for minutes, decompacts chromatin structure and increases enhancer dynamics. We also uncovered a rare fast-diffusing state of enhancers and found that NuRD restricts the time spent in this state.
View Article and Find Full Text PDFThe key to ensuring proper chromosome segregation during mitosis is the kinetochore (KT), a tightly regulated multiprotein complex that links the centromeric chromatin to the spindle microtubules and as such leads the segregation process. Understanding its architecture, function, and regulation is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in structural detail so far.
View Article and Find Full Text PDFA major challenge in single-molecule imaging is tracking the dynamics of proteins or complexes for long periods of time in the dense environments found in living cells. Here, we introduce the concept of using FRET to enhance the photophysical properties of photo-modulatable (PM) fluorophores commonly used in such studies. By developing novel single-molecule FRET pairs, consisting of a PM donor fluorophore (either mEos3.
View Article and Find Full Text PDFSingle-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy.
View Article and Find Full Text PDFThe nucleosome remodeling deacetylase (NuRD) complex is a highly conserved regulator of chromatin structure and transcription. Structural studies have shed light on this and other chromatin modifying machines, but much less is known about how they assemble and whether stable and functional sub-modules exist that retain enzymatic activity. Purification of the endogenous Drosophila NuRD complex shows that it consists of a stable core of subunits, while others, in particular the chromatin remodeler CHD4, associate transiently.
View Article and Find Full Text PDFSingle-molecule super-resolution microscopy allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. Here, we demonstrate 3D sectioning with single-molecule super-resolution microscopy by making use of the fitting information that is usually discarded to reject fluorophores that emit from above or below a virtual-'light-sheet', a thin volume centred on the focal plane of the microscope. We describe an easy-to-use routine (implemented as an open-source ImageJ plug-in) to quickly analyse a calibration sample to define and use such a virtual light-sheet.
View Article and Find Full Text PDFWe describe a microfluidic device designed specifically for the reversible immobilisation of (Fission Yeast) cells to facilitate live cell super-resolution microscopy. Photo-Activation Localisation Microscopy (PALM) is used to create detailed super-resolution images within living cells with a modal accuracy of >25 nm in the lateral dimensions. The novel flow design captures and holds cells in a well-defined array with minimal effect on the normal growth kinetics.
View Article and Find Full Text PDFDevelopment of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells.
View Article and Find Full Text PDFAlkB homolog 1 (ALKBH1) is one of nine members of the family of mammalian AlkB homologs. Most Alkbh1(-/-) mice die during embryonic development, and survivors are characterized by defects in tissues originating from the ectodermal lineage. In this study, we show that deletion of Alkbh1 prolonged the expression of pluripotency markers in embryonic stem cells and delayed the induction of genes involved in early differentiation.
View Article and Find Full Text PDFThe inheritance of the histone H3 variant CENP-A in nucleosomes at centromeres following DNA replication is mediated by an epigenetic mechanism. To understand the process of epigenetic inheritance, or propagation of histones and histone variants, as nucleosomes are disassembled and reassembled in living eukaryotic cells, we have explored the feasibility of exploiting photo-activated localization microscopy (PALM). PALM of single molecules in living cells has the potential to reveal new concepts in cell biology, providing insights into stochastic variation in cellular states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2012
Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere.
View Article and Find Full Text PDFPost-translational modification of histone proteins are known to play an important role in regulating chromatin structure. In an effort to find additional histone modifications we set out to screen enzymes of the 2-oxoglutarate and Fe(II)-dependent (2-OG-Fe(II)) dioxygenase family for activity towards histones. Here we show that the Schizosaccharomyces pombe 2-OG-Fe(II) dioxygenase domain containing protein-2 (Ofd2) is a histone H2A dioxygenase enzyme.
View Article and Find Full Text PDFA computer modeling of thermodynamic properties of a long DNA of N base pairs that includes omega interstrand crosslinks (ICLs), or omega chemical modifications involving one strand (monofunctional adducts, intrastrand crosslinks) has been carried out. It is supposed in our calculation that both types of chemical modifications change the free energy of the helix-coil transition at sites of their location by deltaF. The value deltaF>0 corresponds to stabilization, i.
View Article and Find Full Text PDF