Publications by authors named "Landau N"

Background: While immunotherapy has been highly successful for the treatment of some cancers, for others, the immune response to tumor antigens is weak leading to treatment failure. The resistance of tumors to checkpoint inhibitor therapy may be caused by T cell exhaustion resulting from checkpoint activation.

Methods: In this study, lentiviral vectors that expressed T cell epitopes of an experimentally introduced tumor antigen, ovalbumin, or the endogenous tumor antigen, Trp1 were developed.

View Article and Find Full Text PDF
Article Synopsis
  • * A new lentiviral transduction protocol was developed to successfully manipulate long-term repopulating quiescent HSC by addressing barriers like vector entry and limited resource availability.
  • * This enhanced method, using cyclosporin H and deoxynucleosides, results in effective level of genetic modifications and improved HSC engraftment compared to traditional culture techniques, paving the way for future genetic engineering strategies.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the link between low ALT (Alanine-aminotransferase) levels and increased mortality risk in hospitalized COVID-19 patients, given its association with sarcopenia and frailty.
  • Data from 357 patients showed that those with low ALT were more likely to die, with a hazard ratio of 1.82, indicating that low ALT is a significant predictor of worse outcomes.
  • The research concludes that low ALT levels are independently associated with a higher risk of mortality in COVID-19 patients, even after accounting for other risk factors like age and comorbidities.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is subject to restriction by several interferon-inducible host proteins. To identify novel factors that limit replication of the virus, we tested a panel of genes that we found were induced by interferon treatment of primary human monocytes by RNA sequencing. Further analysis showed that one of the several candidates genes tested, receptor transporter protein 4 (RTP4), that had previously been shown to restrict flavivirus replication, prevented the replication of the human coronavirus HCoV-OC43.

View Article and Find Full Text PDF

Vectored immunoprophylaxis was first developed as a means of establishing engineered immunity to HIV using an adenoassociated viral vector expressing a broadly neutralizing antibody. We applied this concept to establish long-term prophylaxis against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a mouse model using adenoassociated virus and lentiviral vectors expressing a high-affinity angiotensin-converting enzyme 2 (ACE2) decoy. Administration of decoy-expressing (adenoassociated virus) AAV2.

View Article and Find Full Text PDF

Currently authorized COVID-19 vaccines induce humoral and cellular responses to epitopes in the SARS-CoV-2 spike protein, though the relative roles of antibodies and T cells in protection are not well understood. To understand the role of vaccine-elicited T cell responses in protection, we established a T cell-only vaccine using a DC-targeted lentiviral vector expressing single CD8+ T cell epitopes of the viral nucleocapsid, spike, and ORF1. Immunization of angiotensin-converting enzyme 2-transgenic mice with ex vivo lentiviral vector-transduced DCs or by direct injection of the vector induced the proliferation of functional antigen-specific CD8+ T cells, resulting in a 3-log decrease in virus load upon live virus challenge that was effective against the ancestral virus and Omicron variants.

View Article and Find Full Text PDF

The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high-affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection.

View Article and Find Full Text PDF

Vectored immunoprophylaxis was first developed as a means to establish engineered immunity to HIV through the use of an adeno-associated viral vector expressing a broadly neutralizing antibody. We have applied this concept to establish long-term prophylaxis against SARS-CoV-2 by adeno-associated and lentiviral vectors expressing a high affinity ACE2 decoy receptor. Administration of decoy-expressing AAV vectors based on AAV2.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants with highly mutated spike proteins has presented an obstacle to the use of monoclonal antibodies for the prevention and treatment of SARS-CoV-2 infection. We show that a high affinity receptor decoy protein in which a modified ACE2 ectodomain is fused to a single domain of an immunoglobulin heavy chain Fc region dramatically suppressed virus loads in mice upon challenge with a high dose of parental SARS-CoV-2 or Omicron variants. The decoy also potently suppressed virus replication when administered shortly post-infection.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a global health crisis after its emergence in 2019. Replication of the virus is initiated by binding of the viral spike (S) protein to human angiotensin-converting enzyme 2 (ACE2) on the target cell surface. Mutations acquired by SARS-CoV-2 S variants likely influence virus-target cell interaction.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) disease is associated with coagulopathy and an increased risk of thrombosis. An association between thrombin generation (TG) capacity, disease severity, and outcomes has not been well described.

Methods: We assessed the correlation of TG with sequential organ failure assessment (SOFA) and sepsis-induced coagulopathy (SIC) scores and clinical outcomes by analysis of plasma samples obtained from hospitalized COVID-19 patients.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since December 2019, and with it, a push for innovations in rapid testing and neutralizing antibody treatments in an effort to solve the spread and fatality of the disease. One such solution to both of these prevailing issues is targeting the interaction of SARS-CoV-2 spike receptor binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2) receptor protein. Structural studies have shown that the N-terminal alpha-helix comprised of the first 23 residues of ACE2 plays an important role in this interaction.

View Article and Find Full Text PDF

Lentiviral vector-based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression.

View Article and Find Full Text PDF

The recent emergence of the Omicron BA.1 and BA.2 variants with heavily mutated spike proteins has posed a challenge to the effectiveness of current vaccines and to monoclonal antibody therapy for severe COVID-19.

View Article and Find Full Text PDF

Background: SARS-CoV-2 vaccines currently authorized for emergency use have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against earlier SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant presents an obstacle both to vaccine protection and monoclonal antibody therapies.

Methods: Pseudotyped lentiviruses were incubated with serum from vaccinated and boosted donors or therapeutic monoclonal antibody and then applied to target cells.

View Article and Find Full Text PDF

The effect of SARS-CoV-2 infection on placental function is not well understood. Analysis of placentas from women who tested positive at delivery showed SARS-CoV-2 genomic and subgenomic RNA in 22 out of 52 placentas. Placentas from two mothers with symptomatic COVID-19 whose pregnancies resulted in adverse outcomes for the fetuses contained high levels of viral Alpha variant RNA.

View Article and Find Full Text PDF

Background: The emergence of recombinant viruses is a threat to public health. Recombination of viral variants may combine variant-specific features that together catalyze viral escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how COVID-19 affects the gastrointestinal system, focusing on the variation in virus replication among different individuals' intestinal organoids.
  • Researchers found significant differences in the replication of the SARS-CoV-2 virus based on the levels of ACE2 expression in the organoids, which indicates a potential link to varying patient outcomes.
  • The findings suggest that the Omicron variant may have a heightened ability to infect intestinal tissues, highlighting the importance of ACE2 levels in understanding COVID-19's gastrointestinal effects.
View Article and Find Full Text PDF

The increasing prevalence of SARS-CoV-2 variants has raised concerns regarding possible decreases in vaccine effectiveness. Here, neutralizing antibody titers elicited by mRNA-based and adenoviral vector-based vaccines against variant pseudotyped viruses were measured. BNT162b2 and mRNA-1273-elicited antibodies showed modest neutralization resistance against Beta, Delta, Delta plus and Lambda variants whereas Ad26.

View Article and Find Full Text PDF

Monoclonal antibody therapy for the treatment of SARS-CoV-2 infection has been highly successful in decreasing disease severity; however, the recent emergence of the heavily mutated Omicron variant has posed a challenge to this treatment strategy. The Omicron variant BA.1 has been found to evade neutralization by several of the therapeutic monoclonal antibodies authorized for emergency use, while Vir-7831 and a cocktail consisting of monoclonal antibodies AZD8895+AZD1061 retain significant neutralizing activity.

View Article and Find Full Text PDF

Global control of COVID-19 will require the deployment of vaccines capable of inducing long-term protective immunity against SARS-CoV-2 variants. In this report, we describe an adjuvanted subunit candidate vaccine that affords elevated, sustained, and cross-variant SARS-CoV-2 neutralizing antibodies (NAbs) in multiple animal models. Alhydroxiquim-II is a Toll-Like Receptor (TLR) 7/8 small-molecule agonist chemisorbed on aluminum hydroxide (Alhydrogel).

View Article and Find Full Text PDF

Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies.

View Article and Find Full Text PDF

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency.

View Article and Find Full Text PDF