Publications by authors named "Landa Abraham"

Article Synopsis
  • - The study focuses on the TATA-binding protein (TBP) gene in *Taenia solium*, revealing the presence of transcription factor binding sites and two TATA-like elements in its promoter, which do not bind TBP.
  • - Researchers identified key elements important for gene expression, such as the transcription start site and a downstream promoter element (DPE), and confirmed the expression of TBP-Associated Factors TsTAF6 and TsTAF9 in the parasite.
  • - Molecular dynamics simulations provided insights into how TsTAF6 and TsTAF9 interact with the DPE probe, leading to a proposed interaction model that underscores their novel role in regulating transcription in *T. solium*.
View Article and Find Full Text PDF
Article Synopsis
  • Taenia solium can lead to serious health issues like taeniasis and cysticercosis, particularly neurocysticercosis, which is a focus for disease control and mental health prevention.
  • Structural analysis of the 24-kDa glutathione transferase gene (Ts24gst) revealed its conserved architecture and potential regulatory elements, indicating its importance in the parasite's survival.
  • The recombinant Ts24GST protein demonstrated strong biochemical activity and stability under various conditions, enhancing our understanding of T. solium and aiding efforts to combat related diseases.
View Article and Find Full Text PDF

Some parasites are known to influence brain proteins or induce changes in the functioning of the nervous system. In this study, our objective is to demonstrate how the two-dimensional gel technique is valuable for detecting differences in protein expression and providing detailed information on changes in the brain proteome during a parasitic infection. Subsequently, we seek to understand how the parasitic infection affects the protein composition in the brain and how this may be related to changes in brain function.

View Article and Find Full Text PDF

Thioredoxin1 (Trx1) is a ubiquitous antioxidant protein that regulates the cell's redox status. Trx1's thiol redox activity protects neurons from various physiological processes that cause neuronal damage and neurodegeneration, including oxidative stress, apoptosis, and inflammation. Several studies have found that direct or indirect Trx1 regulation has neuroprotective effects in the brain, protecting against, preventing, or delaying neurodegenerative processes or brain traumas.

View Article and Find Full Text PDF

A cysticercosis model of ORF strain in susceptible BALB/c mice revealed a Th2 response after 4 weeks, allowing for the growth of the parasite, whereas resistant C57BL/6 mice developed a sustained Th1 response, limiting parasitic growth. However, little is known about how cysticerci respond to an immunological environment in resistant mice. Here, we show that the Th1 response, during infection in resistant C57BL/6 mice, lasted up to 8 weeks and kept parasitemia low.

View Article and Find Full Text PDF

Introduction: Traumatic brain injury (TBI) is a public health concern with limited treatment options because it causes a cascade of side effects that are the leading cause of hospital death. Thioredoxin is an enzyme with neuroprotective properties such as antioxidant, antiapoptotic, immune response modulator, and neurogenic, among others; it has been considered a therapeutic target for treating many disorders.

Methods: The controlled cortical impact (CCI) model was used to assess the effect of recombinant human thioredoxin 1 (rhTrx1) (1 μg/2 μL, intracortical) on rats subjected to TBI at two different times of the light-dark cycle (01:00 and 13:00 h).

View Article and Find Full Text PDF

Thioredoxins (TRXs) are a class of ubiquitous and multifunctional protein. Mammal cells present three isoforms: a cytosolic and extracellular called thioredoxin 1 (TRX1), a mitochondrial (TRX2), and one specific in spermatozoids (TRX3). Besides, a truncated form called TRX80 exists, which results from the post-translational cleavage performed on TRX1.

View Article and Find Full Text PDF

Neurocysticercosis caused by Taenia solium larvae is a neglected disease that persists in several countries, including Mexico, and causes a high disability-adjusted life year burden. Neuroimaging tools such as computed tomography and magnetic resonance imaging are the most efficient for its detection, but low availability and high costs in most endemic regions limit their use. Serological methods such as lentil lectin-purified glycoprotein enzyme-linked immunoelectrotransfer blot antibody detection and monoclonal antibody-based enzyme-linked immunosorbent assays for HP10 antigen detection have been useful in supporting the diagnosis of this disease.

View Article and Find Full Text PDF

The intraperitoneal cysticercosis model with the Taenia crassiceps ORF strain in female BALB/cAnN mice has been widely used to study the immune response in cysticercosis. During early infection (2 weeks), the host develops a non-permissive Th1 response, whereas during late infection (8 weeks), molecules from the cysticerci induce a Th2 response that is permissive to parasite growth. The modulation of the Th2 response is induced by molecules excreted/secreted by the larval stage of the parasite.

View Article and Find Full Text PDF

The inappropriate use of anthelmintics, such as praziquantel and albendazole, has generated resistance and the need to develop new drugs. Glutathione transferases, GSTs, are bisubstrate dimeric enzymes that constitute the main detoxification mechanism against electrophiles, drugs and oxidative damage in Taenia solium. Therefore, GSTs are important targets for the development of new anthelmintics.

View Article and Find Full Text PDF

Neurocysticercosis (NCC), a major cause of neurological morbidity worldwide, is caused by the larvae of Taenia solium. Cestodes secrete molecules that block the Th1 response of their hosts and induce a Th2 response permissive to their establishment. Mature microRNAs (miRs) are small noncoding RNAs that regulate gene expression and participate in immunological processes.

View Article and Find Full Text PDF

Glutathione (GSH) transferase (GST) is an essential enzyme in cestodes for the detoxification of xenobiotics. In , two GSTs (Ts25GST and Ts26GST kDa) were isolated as a fraction (SGSTF) by GSH-Sepharose-4B. Both are located on the tegument.

View Article and Find Full Text PDF

Scorpine-like peptides are two domain peptides found in different scorpion venoms displaying various antimicrobial, cytolytic, and potassium channel-blocking activities. The relative contribution of each domain to their different activities remains to be elucidated. Here, we report the recombinant production, solution structure, and antiparasitic activity of Hge36, first identified as a naturally occurring truncated form of a Scorpine-like peptide from the venom of Hoffmannihadrurus gertschi.

View Article and Find Full Text PDF

TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.

View Article and Find Full Text PDF

Taenia solium thioredoxin-1 gene (TsTrx-1) has a length of 771 bp with three exons and two introns. The core promoter gene presents two putative stress transcription factor binding sites, one putative TATA box, and a transcription start site (TSS). TsTrx-1 mRNA is expressed higher in larvae than in adult.

View Article and Find Full Text PDF

Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity.

View Article and Find Full Text PDF

The Taenia crassiceps ORF strain is used to generate a murine model of cysticercosis, which is used for diagnosis, evaluation of drugs, and vaccination. This particular strain only exists as cysticerci, is easily maintained under in vivo and in vitro conditions, and offers an excellent model for studying the cytoskeletons of cestodes. In this study, several experimental approaches were used to determine the tissue expression of its cytoskeletal proteins.

View Article and Find Full Text PDF

In this work, we studied a recombinant mu-class glutathione transferase of 25.5 kDa from Taenia solium metacestode (rTs25GST1-1) that follows Michaelis–Menten kinetics with 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters obtained for rTs25GST1-1 with CDNB and GSH were V(max) =12.

View Article and Find Full Text PDF

In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect.

View Article and Find Full Text PDF

Gnathostomiasis is now recognized as a zoonosis with a worldwide distribution. In the Americas, it is caused by the third-stage larvae of Gnathostoma binucleatum and in Asia mainly by G. spinigerum.

View Article and Find Full Text PDF

Humans acquire taeniasis by ingesting pork meat infected with Taenia solium cysticerci, which are the only definitive hosts of the adult stage (tapeworm) and responsible for transmitting the human and porcine cysticercosis. Hence, detection of human tapeworm carriers is a key element in the development of viable strategies to control the disease. This paper presents the identification of specific antigens using sera from hamsters infected with T.

View Article and Find Full Text PDF

Cytosolic Cu,Zn superoxide dismutase (Cu,Zn-SOD) catalyzes the dismutation of superoxide (O(2)(-)) to oxygen and hydrogen peroxide (H(2)O(2)) and plays an important role in the establishment and survival of helminthes in their hosts. In this work, we describe the Taenia solium Cu,Zn-SOD gene (TsCu,Zn-SOD) and a Taenia crassiceps (TcCu,Zn-SOD) cDNA. TsCu,Zn-SOD gene that spans 2.

View Article and Find Full Text PDF

Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase.

View Article and Find Full Text PDF