Publications by authors named "Lanciego J"

The development of clinical candidates that modify the natural progression of sporadic Parkinson's disease and related synucleinopathies is a praiseworthy endeavor, but extremely challenging. Therapeutic candidates that were successful in preclinical Parkinson's disease animal models have repeatedly failed when tested in clinical trials. While these failures have many possible explanations, it is perhaps time to recognize that the problem lies with the animal models rather than the putative candidate.

View Article and Find Full Text PDF

The term "basal ganglia" refers to a group of interconnected subcortical nuclei engaged in motor planning and movement initiation, executive functions, behaviors, and emotions. Dopamine released from the substantia nigra is the underlying driving force keeping the basal ganglia network under proper equilibrium and, indeed, reduction of dopamine levels triggers basal ganglia dysfunction, setting the groundwork for several movement disorders. The canonical basal ganglia model has been instrumental for most of our current understanding of the normal and pathological functioning of this subcortical network.

View Article and Find Full Text PDF
Article Synopsis
  • VCE-003.2, a derivative of cannabigerol, shows neuroprotective effects in Parkinson's disease models linked to mitochondrial dysfunction and neuroinflammation, now being tested against protein dysregulation associated with the disease.
  • Researchers administered an adeno-associated viral vector carrying a mutated α-synuclein gene to mice, causing motor impairments and neuron loss, then treated them with VCE-003.2 to assess its effects.
  • Results indicated that VCE-003.2 significantly improved motor performance, preserved neuron integrity, reduced microglia and astrocyte activation in the brain, and influenced gene expression related to immune responses, expanding its potential therapeutic benefits in Parkinson's disease.
View Article and Find Full Text PDF

Objective: Acute intermittent porphyria (AIP) is a rare metabolic disorder caused by haploinsufficiency of hepatic porphobilinogen deaminase (PBGD), the third enzyme of the heme biosynthesis. Individuals with AIP experience neurovisceral attacks closely associated with hepatic overproduction of potentially neurotoxic heme precursors.

Design: We replicated AIP in non-human primates (NHPs) through selective knockdown of the hepatic gene and evaluated the safety and therapeutic efficacy of human PBGD (hPBGD) mRNA rescue.

View Article and Find Full Text PDF

The cellular prion protein (PrP) plays many roles in the developing and adult brain. In addition, PrP binds to several amyloids in oligomeric and prefibrillar forms and may act as a putative receptor of abnormal misfolded protein species. The role of PrP in tau seeding and spreading is not known.

View Article and Find Full Text PDF

The differential vulnerability of dopaminergic neurons of the substantia nigra pars compacta (SNc) is a critical and unresolved question in Parkinson´s disease. Studies in mice show diverse susceptibility of subpopulations of nigral dopaminergic neurons to various toxic agents. In the primate midbrain, the molecular phenotypes of dopaminergic neurons and their differential vulnerability are poorly characterized.

View Article and Find Full Text PDF

Viral vectors based on recombinant adeno-associated virus (rAAV) have become the most widely used system for therapeutic gene delivery in the central nervous system (CNS). Despite clinical safety and efficacy in neurological applications, a barrier to adoption of the current generation of vectors lies in their limited efficiency, resulting in limited transduction of CNS target cells. To address this limitation, researchers have bioengineered fit-for-purpose AAVs with improved CNS tropism and tissue penetration.

View Article and Find Full Text PDF

Different screening methods are being developed to generate adeno-associated viral vectors (AAV) with the ability to bypass the blood-brain barrier (BBB) upon intravenous administration. Recently, the AAV9P31 stood out as the most efficient version among a library of peptide-displaying capsids selected in C57BL/6 mice using RNA-driven biopanning. In this work we have characterized in detail its biodistribution in different mouse strains (C57BL/6 and Balb/c), as well as in Sprague Dawley rats and non-human primates (Macaca fascicularis).

View Article and Find Full Text PDF

Introduction: The presence of a widespread cortical synucleinopathy is the main neuropathological hallmark underlying clinical entities such as Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB). There currently is a pressing need for the development of non-human primate (NHPs) models of PDD and DLB to further overcome existing limitations in drug discovery.

Methods: Here we took advantage of a retrogradely-spreading adeno-associated viral vector serotype 9 coding for the alpha-synuclein A53T mutated gene (AAV9-SynA53T) to induce a widespread synucleinopathy of cortical and subcortical territories innervating the putamen.

View Article and Find Full Text PDF
Article Synopsis
  • * It utilizes a new method, MolBoolean, to analyze the interaction between these receptors in rats and monkeys, revealing that a high percentage of DR receptors interact with AR receptors, especially in a PD model.
  • * The findings suggest that the functioning of DR in certain neurons is regulated by AR, indicating potential benefits of using adenosine receptor blockers as an early treatment for Parkinson's disease.
View Article and Find Full Text PDF

The SCN1A gene encodes the alpha subunit of a voltage-gated sodium channel (Na1.1), which is essential for the function of inhibitory neurons in the brain. Mutations in this gene cause severe encephalopathies such as Dravet syndrome (DS).

View Article and Find Full Text PDF

Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons.

View Article and Find Full Text PDF

Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address.

View Article and Find Full Text PDF

The metabolic syndrome has been associated to chronic peripheral inflammation and related with neuroinflammation and neurodegeneration, including Parkinson's disease. However, the responsible mechanisms are unclear. Previous studies have involved the brain renin-angiotensin system in progression of Parkinson's disease and the angiotensin receptor type 1 (AT1) has been recently revealed as a major marker of dopaminergic vulnerability in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Rare diseases like acute intermittent porphyria (AIP) have gained attention in drug research, prompting pharmaceutical companies to create new therapeutic options.* -
  • AIP results from a deficiency in a key enzyme in the heme biosynthesis pathway, with recent therapies including glucose infusions and an innovative siRNA strategy to enhance enzyme activity.* -
  • Ongoing research aims to optimize gene therapy for AIP, and recent studies show promise in using mRNA transfer technology for treating metabolic diseases in clinical trials.*
View Article and Find Full Text PDF

It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach.

View Article and Find Full Text PDF

Correction of enzymatic deficits in hepatocytes by systemic administration of a recombinant protein is a desired therapeutic goal for hepatic enzymopenic disorders such as acute intermittent porphyria (AIP), an inherited porphobilinogen deaminase (PBGD) deficiency. Apolipoprotein A-I (ApoAI) is internalized into hepatocytes during the centripetal transport of cholesterol. Here, we generated a recombinant protein formed by linking ApoAI to the amino terminus of human PBGD (rhApoAI-PBGD) in an attempt to transfer PBGD into liver cells.

View Article and Find Full Text PDF
Article Synopsis
  • ACE2 is essential for regulating oxidative stress and inflammation in the body and serves as the entry point for the SARS-CoV-2 virus.
  • Research shows that ACE2 and its products are concentrated in mitochondria and interact with a receptor called MrgE, leading to the production of nitric oxide, which is crucial for cellular function.
  • Changes in the levels of ACE2, MrgE, and associated oxidative stress markers in the brain may contribute to neurodegenerative diseases and could also influence how SARS-CoV-2 affects cells.
View Article and Find Full Text PDF

It is without any doubt that precision medicine therapeutic strategies targeting neurodegenerative disorders are currently witnessing the spectacular rise of newly designed approaches based on the use of viral vectors as Trojan horses for the controlled release of a given genetic payload. Among the different types of viral vectors, adeno-associated viruses (AAVs) rank as the ones most commonly used for the purposes of either disease modeling or for therapeutic strategies. Here, we reviewed the current literature dealing with the use of AAVs within the field of Parkinson's disease with the aim to provide neuroscientists with the advice and background required when facing a choice on which AAV might be best suited for addressing a given experimental challenge.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma multiforme is the most common and aggressive brain tumor, currently lacking effective therapies.
  • High levels of mesenchymal markers and increased autophagy are observed in glioblastoma cells, indicating a complex disease pathogenesis.
  • Silencing HDAC6 in glioblastoma cell lines showed reduced tumor cell growth and migration, reversed aggressive traits, and suggests HDAC6 as a potential therapeutic target.
View Article and Find Full Text PDF

Mutations in the GBA1 gene coding for glucocerebrosidase (GCase) are the main genetic risk factor for Parkinson's disease (PD). Indeed, identifying reduced GCase activity as a common feature underlying the typical neuropathological signatures of PD-even when considering idiopathic forms of PD-has recently paved the way for designing novel strategies focused on enhancing GCase activity to reduce alpha-synuclein burden and preventing dopaminergic cell death. Here we have performed bilateral injections of a viral vector coding for the mutated form of alpha-synuclein (rAAV9-SynA53T) for disease modeling purposes, both in mice as well as in nonhuman primates (NHPs), further inducing a progressive neuronal death in the substantia nigra pars compacta (SNpc).

View Article and Find Full Text PDF

Tauopathies are a group of neurodegenerative diseases characterized by the alteration/aggregation of TAU protein, for which there is still no effective treatment. Therefore, new pharmacological targets are being sought, such as elements of the endocannabinoid system (ECS). We analysed the occurrence of changes in the ECS in tauopathies and their implication in the pathogenesis.

View Article and Find Full Text PDF

The morphological changes that occur in the central nervous system of patients with severe acute intermittent porphyria (AIP) have not yet been clearly established. The aim of this work was to analyze brain involvement in patients with severe AIP without epileptic seizures or clinical posterior reversible encephalopathy syndrome, as well as in a mouse model receiving or not liver-directed gene therapy aimed at correcting the metabolic disorder. We conducted neuroradiologic studies in 8 severely affected patients (6 women) and 16 gender- and age-matched controls.

View Article and Find Full Text PDF

Endocannabinoids are neuromodulators acting on specific cannabinoid CB and CB G-protein-coupled receptors (GPCRs), representing potential therapeutic targets for neurodegenerative diseases. Cannabinoids also regulate the activity of GPR55, a recently "deorphanized" GPCR that directly interacts with CB and with CB receptors. Our hypothesis is that these heteromers may be taken as potential targets for Parkinson's disease (PD).

View Article and Find Full Text PDF