Accumulating studies have investigated the efficacy of receptor-mediated delivery of hydrophobic drugs in glioma chemotherapy. Here, a delivery vehicle comprising polyethylene glycol (PEG) and oxidized nanocrystalline mesoporous carbon particles (OMCN) linked to the Pep22 polypeptide targeting the low-density lipoprotein receptor (LDLR) is designed to generate a novel drug-loaded system, designated as OMCN-PEG-Pep22/DOX (OPPD). This system effectively targets glioma cells and the blood-brain barrier and exerts therapeutic efficacy through both near-infrared (NIR) photothermal and chemotherapeutic effects of loaded doxycycline (DOX).
View Article and Find Full Text PDFBackground: Both the pterygopalatine fossa (PPF) and the infratemporal fossa (ITF) lie outside the midline of the skull base. Lesions in the PPF or ITF include trigeminal schwannoma (trigeminal schwannoma, TS), which originates from the second or third branch of the trigeminal nerve (maxillary nerve or mandibular nerve). Due to their typically deep anatomic location, lesions in the PPF or ITF can be difficult to treat using traditional surgical approaches.
View Article and Find Full Text PDFThe present study aimed to investigate the role of pituitary tumor-transforming gene 1 (PTTG1) in the proliferation, invasion and apoptosis of human malignant glioma U251 cells. Firstly, 2 microRNAs (miRNAs) targeting PTTG1 messenger (m)RNA were ligated into a pcDNA6.2-GW/EmGFP-miR expression vector.
View Article and Find Full Text PDFGlioblastomas are understood to evolve from brain glioma stem cells (BGSCs), and yet the biology underlying this model of tumorigenesis is largely unknown. Paired box 3 protein (Pax3) is a member of the paired box (Pax) family of transcription factors that is normally expressed during embryonic development, but has recently been implicated in tumorigenesis. The present study demonstrated that Pax3 is differentially expressed in U87MG human glioma cell, BGSC and normal 1800 human astrocyte lines.
View Article and Find Full Text PDFGliomas are the most common type of brain tumor in the central nervous system of adults, and are highly aggressive, resistant to treatment, and prone to recurrence. Brain tumor stem cells (BTSCs) are implicated in tumor initiation and recurrence. Cluster of differentiation (CD)133 is currently the most widely used BTSC marker; however, its role in glioma development and progression is largely unknown.
View Article and Find Full Text PDFObjective: Transarterial treatment of direct carotid cavernous fistulas (DCCF) via embolic materials has been well documented. This study reports, validates, and compares with existing literature our experience treating DCCFs via endovascular approaches by using detachable balloons, coils, and covered stents.
Methods: Between June 2006 to October 2011, 32 patients (21 male, 11 female) with 32 DCCFs (30 traumatic, 2 spontaneous cavernous ICA aneurysms) were embolized endovascularly.
Gliomas are the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve therapies, their prognosis remains very poor. Isocitrate dehydrogenase 1 (IDH1) mutations have been discovered frequently in glioma patients and are strongly correlated with improved survival.
View Article and Find Full Text PDFThe isocitrate dehydrogenase 1 (IDH1) gene mutation occurs frequently in glioma. While some studies have demonstrated that IDH1 mutations are associated with prolonged survival, the mechanism remains unclear. In this study, we found that growth was significantly inhibited in glioma cells overexpressing the mutated IDH1 gene.
View Article and Find Full Text PDFPurpose: It is generally accepted that inflammation has a role in the progression of many central nervous system (CNS) diseases, although the mechanisms through which this occurs remain unclear. Among mitogen-activated protein kinase (MAPK) targets, mitogen- and stress-activated protein kinase (MSK1) has been thought to be involved in the pathology of inflammatory gene expression. In this study, the roles of MSK1 activation in neuroinflammation were investigated.
View Article and Find Full Text PDFTentorial dural arteriovenous fistula (DAVF) as a cause of trigeminal neuralgia is extremely rare. Although less than 10 cases have been reported in the literature, all cases presented with ipsilateral trigeminal neuralgia. Here we report a unique case of tentorial DAVF manifesting as contralateral trigeminal neuralgia.
View Article and Find Full Text PDFTentorial dural arteriovenous fistula (DAVF) as a cause of trigeminal neuralgia is extremely rare. Although less than 10 cases have been reported in the literature, all cases presented with ipsilateral trigeminal neuralgia. Here we report a unique case of tentorial DAVF manifesting as contralateral trigeminal neuralgia.
View Article and Find Full Text PDFJ Mol Neurosci
October 2013
Septins are a novel group of GTPases, which are first identified in yeast and more recently found in a wide range of animal cells. Septin-9, a novel septin family member, is expressed ubiquitously and involved in an increasing number of signaling cascades. However, information regarding its distribution and possible function in the central nervous system (CNS) is limited.
View Article and Find Full Text PDFGlioma is the leading cause of tumor-related mortality in the central nervous system. There is increasing evidence that the self-renewal capacity of cancer cells is critical for the initiation, growth and recurrence of tumors. OCT4 is a transcription factor that plays a key role in regulating the self-renewal ability of embryonic stem cells.
View Article and Find Full Text PDFSKIP (Ski-interacting protein), is part of nuclear regulatory complexes and interacts with factors involved in preinitiation, splicing and polyadenylation, potentiates the activity of important transcription factors, involved in an increasing number of signaling cascades. However, its distribution and function in the central nervous system remains poorly understood. In this study, western blot analysis, RT-PCR and immunohistochemistry showed a significant up-regulation of SKIP in ipsilateral peritrauma cortex compared with the sham group.
View Article and Find Full Text PDFThis study tested the cytotoxicity of a BDNF blended chitosan scaffold with human umbilical cord mesenchymal stem cells (hUC-MSCs), and the in vitro effect of BDNF blended chitosan scaffolds on neural stem cell differentiation with the aim of contributing alternative methods in tissue engineering for the treatment of traumatic brain injury (TBI). The chitosan scaffold based on immobilization of BDNF by genipin (GP) as a crosslinking agent referred to hereafter as a CGB scaffold was prepared by freezing-drying technique. hUC-MSCs were co-cultured with the CGB scaffold.
View Article and Find Full Text PDFThe paired box 3 (PAX3), a crucial transcription factor, is normally expressed during embryonic development and is absent in normal adult human tissues. Deregulated expression of PAX3 has been observed in tumors like rhabdomyosarcoma and melanomas. To assess deregulated PAX3 expression in patients with gliomas, these samples from 57 glioma patients (13 grade I, 16 grade II, 14 grade III, and 14 grade IV tumors) and 10 normal brain specimens acquired from 10 patients undergoing surgery for epilepsy as control were obtained.
View Article and Find Full Text PDFMLTK (mixed-lineage kinase-like mitogen-activated protein triple kinase) is a member of the mitogen-activated protein kinase family and functioned as a mitogen activated kinase kinase kinase. MLTKα, one of the alternatively spliced forms of MLTK, could activate the c-Jun N-terminal kinase pathway, which involved in cellular stress responses and apoptosis. But the role of MLTKα in neural apoptosis was still unclear.
View Article and Find Full Text PDFMammalian ecto ADP-ribosyltransferases (ARTs) can regulate the biological functions of various types of cells by catalyzing the transfer of single ADP-ribose moiety from NAD+ to a specific amino acid in a target protein. ART3 is a member of the known ART family which is involved in cell division, DNA-repair and the regulation of the inflammatory response. To elucidate the expression, cellular localization and possible functions of ART3 in central nervous system (CNS) lesion and repair, we performed an acute traumatic brain injury model in adult rats.
View Article and Find Full Text PDFp21-activated Kinase 6 (PAK6) is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family. PAK kinases are well-known regulators of a wide variety of cellular functions, including regulation of cytoskeleton rearrangement, cell survival, apoptosis and the mitogen-activated protein kinase signaling pathway. To elucidate the expressions and possible functions of PAK6 in central nervous system (CNS) lesion and repair, we performed a traumatic brain injury (TBI) model in adult rats.
View Article and Find Full Text PDFHS1-associated protein X-1 (Hax-1) is an intracellular protein with anti-apoptotic properties that, in addition to suppressing cell death by inhibiting the activation of initiator caspase-9 and death caspase-3, is involved in an increasing number of signaling cascades. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of Hax-1 expression in the brain cortex.
View Article and Find Full Text PDFTRAF6 (TNF receptor-associated factor 6), a member of tumor necrosis factor receptor-associated factors family was identified as a molecule that binds to the cytoplasmic domain of CD40. TRAF6 functions as an adaptor, positively regulating the NF-κB, JNK pathway. Additionally, some studies have reported that TRAF6 is required for apoptosis within the developing CNS and regulates cell fate decisions by inducing caspase 8-dependent apoptosis.
View Article and Find Full Text PDF