Cresyl diphenyl phosphate (CDP), a novel organophosphate ester (OPE), has been increasingly detected in various environmental and human samples. However, its toxicity, mechanisms, and health risks remain largely unknown. In this work, we investigated CDP-induced hepatic steatosis through Liver X Receptor α (LXRα) pathway across the molecular interactions, signaling pathways, cell functions, animal effects, and population risks, and compared them to triphenyl phosphate (TPHP) and tricresyl phosphate (TCRP).
View Article and Find Full Text PDFFine particulate matter (PM)-induced metabolic disorders have attracted increasing attention, however, the underlying molecular mechanism of PM2.5-induced hepatic bile acid disorder remains unclear. In this study, we investigated the effects of PM components on the disruption of bile acid in hepatocytes through farnesoid X receptor (FXR) pathway.
View Article and Find Full Text PDFToxicity and risk priority ranking of chemicals are crucial to management and decision-making. In this work, we develop a new mechanistic ranking approach of toxicity and risk priority ranking for polybrominated diphenyl ethers (PBDEs) based on receptor-bound concentration (RBC). Based on the binding affinity constant predicted using molecular docking, internal concentration converted from human biomonitoring data via PBPK model, and the receptor concentration derived from the national center for biotechnology information (NCBI) database, the RBC of 49 PBDEs binding to 24 nuclear receptors were calculated.
View Article and Find Full Text PDFProduction of L-glutamate using a biotin-deficient strain of Corynebacterium glutamicum has a long history. The process is achieved by controlling biotin at suboptimal dose in the initial fermentation medium, meanwhile feeding NH4OH to adjust pH so that α-ketoglutarate (α-KG) can be converted to L-glutamate. In this study, we deleted glutamate dehydrogenase (gdh1 and gdh2) of C.
View Article and Find Full Text PDF