Superresolution tools, such as PALM and STORM, provide nanoscale localization accuracy by relying on rare photophysical events, limiting these methods to static samples. By contrast, here, we extend superresolution to dynamics without relying on photodynamics by simultaneously determining emitter numbers and their tracks (localization and linking) with the same localization accuracy per frame as widefield superresolution on immobilized emitters under similar imaging conditions (≈50 nm). We demonstrate our Bayesian nonparametric track (BNP-Track) framework on both in cellulo and synthetic data.
View Article and Find Full Text PDFCell Rep Methods
December 2023
In this issue of Cell Reports Methods, Roudot et al. present u-track 3D, a package geared toward improving the workflow of offline widefield multi-molecule tracking. The package is tailored for visualization of tracks, tracking, and assessment of trackability in tracking particles in biological systems.
View Article and Find Full Text PDFWe propose to capture reaction-diffusion on a molecule-by-molecule basis from the fastest acquirable timescale, namely individual photon arrivals. We illustrate our method on intrinsically disordered human proteins, the linker histone H1.0 as well as its chaperone prothymosin , as these diffuse through an illuminated confocal spot and interact forming larger ternary complexes on millisecond timescales.
View Article and Find Full Text PDFBdellovibrio bacteriovorus is a predatory bacterium preying upon Gram-negative bacteria. As such, B. bacteriovorus has the potential to control antibiotic-resistant pathogens and biofilm populations.
View Article and Find Full Text PDFAssessing dynamic processes at single molecule scales is key toward capturing life at the level of its molecular actors. Widefield superresolution methods, such as STORM, PALM, and PAINT, provide nanoscale localization accuracy, even when distances between fluorescently labeled single molecules ("emitters") fall below light's diffraction limit. However, as these superresolution methods rely on rare photophysical events to distinguish emitters from both each other and background, they are largely limited to static samples.
View Article and Find Full Text PDFWhen tracking fluorescently labeled molecules (termed "emitters") under widefield microscopes, point spread function overlap of neighboring molecules is inevitable in both dilute and especially crowded environments. In such cases, superresolution methods leveraging rare photophysical events to distinguish static targets nearby in space introduce temporal delays that compromise tracking. As we have shown in a companion manuscript, for dynamic targets, information on neighboring fluorescent molecules is encoded as spatial intensity correlations across pixels and temporal correlations in intensity patterns across time frames.
View Article and Find Full Text PDFTracking single molecules continues to provide new insights into the fundamental rules governing biological function. Despite continued technical advances in fluorescent and non-fluorescent labeling as well as data analysis, direct observations of trajectories and interactions of multiple molecules in dense environments remain aspirational goals. While confocal methods provide a means to deduce dynamical parameters with high temporal resolution, such as diffusion coefficients, they do so at the expense of spatial resolution.
View Article and Find Full Text PDF