Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the gene transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing.
View Article and Find Full Text PDFBackground: Physical forces exerted by expanding brain tumors - specifically the compressive stresses propagated through solid tissue structures - reduces brain perfusion and neurological function, but heretofore has not been directly measured in patients . Solid stress levels estimated from tumor growth patterns are negatively correlated with neurological performance in patients. We hypothesize that measurements of solid stress can be used to inform clinical management of brain tumors.
View Article and Find Full Text PDFBeyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance.
View Article and Find Full Text PDFThe lymphatic system plays a vital role in maintaining fluid balance in living tissue and serves as a pathway for the transport of antigen, immune cells, and metastatic cancer cells. In this study, we investigate how the movement of cells through a contracting lymphatic vessel differs from steady flow, using a lattice Boltzmann-based computational model. Our model consists of cells carried by flow in a 2D vessel with regularly spaced, bi-leaflet valves that ensure net downstream flow as the vessel walls contract autonomously in response to calcium and nitric oxide levels regulated by stretch and shear stress levels.
View Article and Find Full Text PDFCritical illness, such as severe COVID-19, is heterogenous in presentation and treatment response. However, it remains possible that clinical course may be influenced by dynamic and/or random events such that similar patients subject to similar injuries may yet follow different trajectories. We deployed a mechanistic mathematical model of COVID-19 to determine the range of possible clinical courses after SARS-CoV-2 infection, which may follow from specific changes in viral properties, immune properties, treatment modality and random external factors such as initial viral load.
View Article and Find Full Text PDFDespite significant strides in lymphatic system imaging, the timely diagnosis of lymphatic disorders remains elusive. One main cause for this is the absence of standardized, quantitative methods for real-time analysis of lymphatic contractility. Here, we address this unmet need by combining near-infrared lymphangiography imaging with an innovative analytical workflow.
View Article and Find Full Text PDFThe lymphatic system plays a crucial role in maintaining tissue fluid balance, immune surveillance, and the transport of lipids and macromolecules. Lymph is absorbed by initial lymphatics and then driven through lymph nodes and to the blood circulation by the contraction of collecting lymphatic vessels. Intraluminal valves in collecting lymphatic vessels ensure the unidirectional flow of lymph centrally.
View Article and Find Full Text PDFOverly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling.
View Article and Find Full Text PDFThis study introduces a tailored COVID-19 model for patients with cancer, incorporating viral variants and immune-response dynamics. The model aims to optimize vaccination strategies, contributing to personalized healthcare for vulnerable groups.
View Article and Find Full Text PDFIntrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC.
View Article and Find Full Text PDFWnt signaling plays a critical role in the progression and treatment outcome of glioblastoma (GBM). Here, we identified WNT7b as a heretofore unknown mechanism of resistance to immune checkpoint inhibition (αPD1) in GBM patients and murine models. Acquired resistance to αPD1 was found to be associated with the upregulation of Wnt7b and β-catenin protein levels in GBM in patients and in a clinically relevant, stem-rich GBM model.
View Article and Find Full Text PDFOverly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling.
View Article and Find Full Text PDFThe gut microbiome has emerged as a key regulator of response to cancer immunotherapy. However, there is a gap in our understanding of the underlying mechanisms by which the microbiome influences immunotherapy. To this end, we developed a mathematical model based on i) gut microbiome data derived from preclinical studies on melanomas after fecal microbiota transplant, ii) mechanistic modeling of antitumor immune response, and iii) robust association analysis of murine and human microbiome profiles with model-predicted immune profiles.
View Article and Find Full Text PDFEffective anti-cancer immune responses require activation of one or more naïve T cells. If the correct naïve T cell encounters its cognate antigen presented by an antigen presenting cell, then the T cell can activate and proliferate. Here, mathematical modeling is used to explore the possibility that immune activation in lymph nodes is a rate-limiting step in anti-cancer immunity and can affect response rates to immune checkpoint therapy.
View Article and Find Full Text PDFLymphatic transport facilitates the presentation of cancer antigens in tumor-draining lymph nodes (tdLNs), leading to T cell activation and the generation of systemic antitumor immune surveillance. Surgical removal of LNs to control cancer progression is routine in clinical practice. However, whether removing tdLNs impairs immune checkpoint blockade (ICB) is still controversial.
View Article and Find Full Text PDFSecondary lymphedema is a debilitating condition driven by impaired regeneration of lymphatic vasculature following lymphatic injury, surgical removal of lymph nodes in cancer patients or infection. However, the extent to which collecting lymphatic vessels regenerate following injury remains unclear. Here, we employed a novel mouse model of lymphatic injury in combination with state-of-the-art lymphatic imaging to demonstrate that the implantation of an optimized fibrin gel following lymphatic vessel injury leads to the growth and reconnection of the injured lymphatic vessel network, resulting in the restoration of lymph flow to the draining node.
View Article and Find Full Text PDFImplementation of effective cancer treatment strategies requires consideration of how the spatiotemporal heterogeneities within the tumor microenvironment (TME) influence tumor progression and treatment response. Here, we developed a multi-scale three-dimensional mathematical model of the TME to simulate tumor growth and angiogenesis and then employed the model to evaluate an array of single and combination therapy approaches. Treatments included maximum tolerated dose or metronomic (i.
View Article and Find Full Text PDFValidation of potential therapeutic targets in cancer requires functional live assays that recapitulate the biology, anatomy, and physiology of human tumors. We present a methodology for maintaining mouse and patient tumor samples ex vivo for in vitro drug-screening as well as for the guidance of patient-specific chemotherapies. The harvested tumor biopsy, excised from mice or patients, is integrated into a support tissue that includes extended stroma and vasculature.
View Article and Find Full Text PDFCardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis.
View Article and Find Full Text PDFRadiotherapy (RT) is a standard treatment for patients with advanced prostate cancer (PCa). Previous preclinical studies showed that SDF1α/CXCR4 axis could mediate PCa metastasis (most often to the bones) and cancer resistance to RT. We found high levels of expression for both SDF1α and its receptor CXCR4 in primary and metastatic PCa tissue samples.
View Article and Find Full Text PDFPhysical forces, including mechanical stretch, fluid pressure, and shear forces alter lymphatic vessel contractions and lymph flow. Gravitational forces can affect these forces, resulting in altered lymphatic transport, but the mechanisms involved have not been studied in detail. Here, we combine a lattice Boltzmann-based fluid dynamics computational model with known lymphatic mechanobiological mechanisms to investigate the movement of fluid through a lymphatic vessel under the effects of gravity that may either oppose or assist flow.
View Article and Find Full Text PDFSARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade.
View Article and Find Full Text PDF