Publications by authors named "Lance Maphosa"

Nitrogen use efficiency (NUE) in crops is generally low, with more than 60% of applied nitrogen (N) being lost to the environment, which increases production costs and affects ecosystems and human habitats. To overcome these issues, the breeding of crop varieties with improved NUE is needed, requiring efficient phenotyping methods along with molecular and genetic approaches. To develop an effective phenotypic screening method, experiments on wheat varieties under various N levels were conducted in the automated phenotyping platform at Plant Phenomics Victoria, Horsham.

View Article and Find Full Text PDF

Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat () and determined the average sensitivities for major yield components.

View Article and Find Full Text PDF

Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field.

View Article and Find Full Text PDF