Publications by authors named "Lancaster M"

Organoids are systems derived from pluripotent stem cells at the interface between traditional monolayer cultures and in vivo animal models. The structural and functional characteristics of organoids enable the modelling of early stages of brain development in a physiologically relevant 3D environment. Moreover, organoids constitute a tool with which to analyse how individual genetic variation contributes to the susceptibility and progression of neurodevelopmental disorders.

View Article and Find Full Text PDF

As the field of neural organoids and assembloids rapidly expands, there is an emergent need for guidance and advice on designing, conducting and reporting experiments to increase the reproducibility and utility of these models. Here, our consortium- representing specialized laboratories from around the world- presents a framework for the experimental process that ranges from ensuring the quality and integrity of human pluripotent stem cells to characterizing and manipulating neural cells in vitro, and from transplantation techniques to considerations for modeling human development, evolution, and disease. As with all scientific endeavors, we advocate for rigorous experimental designs tailored to explicit scientific questions, and transparent methodologies and data sharing, to provide useful knowledge for both current research practices and for developing regulatory standards.

View Article and Find Full Text PDF

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics.

View Article and Find Full Text PDF

Background: Pathogenic variants in subunits of succinyl-CoA synthetase (SCS) are associated with mitochondrial encephalomyopathy in humans. SCS catalyses the conversion of succinyl-CoA to succinate coupled with substrate-level phosphorylation of either ADP or GDP in the TCA cycle. This report presents a muscle-specific conditional knock-out (KO) mouse model of Sucla2, the ADP-specific beta subunit of SCS, generating a novel in vivo model of mitochondrial myopathy.

View Article and Find Full Text PDF
Article Synopsis
  • TTN encodes the protein titin and is commonly associated with rare variants in patients diagnosed with atrial fibrillation (AF) during genetic testing.
  • The study compared characteristics and outcomes of patients with AF having pathogenic TTN variants to those without such variants, revealing that TTN(+) patients experience more persistent AF and require more cardioversions.
  • Findings indicate that nearly 50% of TTN(+) AF patients develop serious heart issues, emphasizing the importance of specialized evaluation and management for these individuals.
View Article and Find Full Text PDF

Evolutionary changes in human brain structure and function have enabled our specialized cognitive abilities. How these changes have come about genetically and functionally has remained an open question. However, new methods are providing a wealth of information about the genetic, epigenetic, and transcriptomic differences that set the human brain apart.

View Article and Find Full Text PDF

Background: Long QT syndrome is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by . Variant classification is difficult, often because of lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance.

View Article and Find Full Text PDF
Article Synopsis
  • Rare genetic diseases like Type 5 Long QT Syndrome (LQT5) are often underdiagnosed due to limited studies in referral populations, leading to skewed insights into these conditions.
  • A new method was developed to identify undiagnosed LQT5 carriers in a broader population, leading to the discovery of 22 additional individuals sharing a specific genetic variant linked to LQT5.
  • The analysis revealed that both referred and non-referred carriers have a prolonged QT interval, and a specific polygenic score can predict QT prolongation among those with the variant, enhancing the understanding of LQT5's impact.
View Article and Find Full Text PDF

Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context.

View Article and Find Full Text PDF

Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages.

View Article and Find Full Text PDF

Background: Computational variant effect predictors offer a scalable and increasingly reliable means of interpreting human genetic variation, but concerns of circularity and bias have limited previous methods for evaluating and comparing predictors. Population-level cohorts of genotyped and phenotyped participants that have not been used in predictor training can facilitate an unbiased benchmarking of available methods. Using a curated set of human gene-trait associations with a reported rare-variant burden association, we evaluate the correlations of 24 computational variant effect predictors with associated human traits in the UK Biobank and All of Us cohorts.

View Article and Find Full Text PDF

The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation.

View Article and Find Full Text PDF
Article Synopsis
  • The use of living biological samples is crucial for preserving and documenting biological diversity, requiring reliable identification and data association for effective use and exchange of these materials.
  • There is currently no standardized naming system for identifying animal biological materials, which can lead to misidentification and data loss.
  • A newly proposed naming scheme aims to create unique identifiers for animal cellular materials, particularly for wildlife species, enhancing traceability and supporting long-term conservation efforts and biomedical research.
View Article and Find Full Text PDF

This report describes a case of transmural migration of a gossypiboma from the peritoneum into the urinary bladder in a 4-year-old, female spayed, mixed-breed dog. The dog was presented on an emergency basis for complete urethral obstruction with radiographic evidence of urocystolithiasis. An exploratory laparotomy was performed and a 4-5 cm mass was identified which was confluent with the apex of the urinary bladder.

View Article and Find Full Text PDF

Background: We identified a novel variant, E171Q, in a neonate with very frequent ectopy and reduced ejection fraction which normalized after arrhythmia suppression by flecainide. This clinical picture is consistent with multifocal ectopic Purkinje-related premature contractions (MEPPC). Most previous reports of MEPPC have implicated variants such as R222Q that neutralize positive charges in the S4 voltage sensor helix of the channel protein Na1.

View Article and Find Full Text PDF

Background: Long QT syndrome (LQTS) is a lethal arrhythmia syndrome, frequently caused by rare loss-of-function variants in the potassium channel encoded by . Variant classification is difficult, often owing to lack of functional data. Moreover, variant-based risk stratification is also complicated by heterogenous clinical data and incomplete penetrance.

View Article and Find Full Text PDF

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics.

View Article and Find Full Text PDF

We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}.

View Article and Find Full Text PDF

Lysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex.

View Article and Find Full Text PDF