Skeletal muscle dysfunction in critical illnesses leaves survivors weak and functionally impaired. Macrophages infiltrate muscles; however, their functional role is unclear. We aim to examine muscle leukocyte composition and the effect of macrophages on muscle mass and function in the murine acute lung injury (ALI)-associated skeletal muscle wasting model.
View Article and Find Full Text PDFMacrophages are important mediators of skeletal muscle function in both healthy and diseased states. In vivo specific depletion of macrophages provides an experimental method to understand physiological and pathophysiological effects of macrophages. Systemic depletion of macrophages can deplete skeletal muscle macrophages but also alters systemic inflammatory responses and metabolism, which confounds the muscle specific effects of macrophage depletion.
View Article and Find Full Text PDFSurvivors of acute respiratory distress syndrome (ARDS) experience challenges that persist well beyond the time of hospital discharge. Impairment in physical function, cognitive function, and mental health are common and may last for years. The current coronavirus disease 2019 pandemic is drastically increasing the incidence of ARDS worldwide, and long-term impairments will remain lasting effects of the pandemic.
View Article and Find Full Text PDFIncreased age is a risk factor for poor outcomes from respiratory failure and acute respiratory distress syndrome (ARDS). In this study, we sought to define age-related differences in lung inflammation, muscle injury, and metabolism after intratracheal lipopolysaccharide (IT-LPS) acute lung injury (ALI) in adult (6 months) and aged (18-20 months) male C57BL/6 mice. We also investigated age-related changes in muscle fatty acid oxidation (FAO) and the consequences of systemic FAO inhibition with the drug etomoxir.
View Article and Find Full Text PDF