Publications by authors named "Lan-mei Chen"

Thioredoxin reductase (TrxR), a major component of the thioredoxin system, makes a critical role in regulating cellular redox signaling and is found to be overexpressed in many human cancer cells. TrxR has become an attractive target for anticancer agents. In this work, three Ru(II) complexes with salicylate as ligand, [Ru(phen)(SA)] (phen = 1,10-phenanthroline, SA = salicylate, 1), [Ru(dmb)(SA)] (dmb = 4,4'-dimethyl-2,2'-bipyridine, 2) and [Ru(bpy)(SA)] (bpy = 2,2'-bipyridine, 3), were synthesized and characterized.

View Article and Find Full Text PDF

A new ruthenium methylimidazole complex [Ru(MeIm)4(p-cpip)](2+) (Ru1, p-cpip=2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, MeIm=1-methylimidazole) has been synthesized and characterized. The cellular uptake, in vitro cytotoxicities, cell cycle arrest and apoptosis-inducing mechanism of this Ru(II) complex have been extensively explored by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, Comet assay, inverted fluorescence microscope as well as Western blotting experimental techniques. Notably, Ru1 displayed relatively high cytotoxic activity against lung cancer A549 cells and had high selectivity between tumor and normal cells in comparison with cisplatin.

View Article and Find Full Text PDF

Unlabelled: Herein, chiral selenium nanoparticles (L-SeNPs/D-SeNPs) modified with a dinuclear Ruthenium (II) complex were used to effectively deliver siRNA targeting the MDR1 gene. In this co-delivery system, the luminescent dinuclear Ruthenium (II) complex was developed to act as a gene carrier and anti-tumor drug, while offering luminescent imaging to follow the intracellular trafficking. Interestingly, Ru@L-SeNPs exhibited a stronger protein and pDNA affinity than Ru@D-SeNPs, indicating that chirality may have an effect on pDNA/siRNA binding and biocompatibility.

View Article and Find Full Text PDF

Two ruthenium(II) complexes, [Ru(L)2(p-tFMPIP)](ClO4)2 (L = bpy, 1; phen, 2; p-tFMPIP = 2-(4-(trifluoromethyphenyl)-1H-imidazo[4,5f][1,10] phenanthroline)), were prepared by microwave-assisted synthesis technology. The inhibitory activity evaluated by MTT assay shown that 2 can inhibit the growth of MDA-MB-231 cells with inhibitory activity (IC50) of 16.3 μM, which was related to the induction of apoptosis.

View Article and Find Full Text PDF

The hydrolysis processes of two Keppler-type antitumor ruthenium(III) complexes of [TzH][trans-RuCl4(Tz)2] (TzICR) and [2-NH2TzH][trans-RuCl4(2-NH2Tz)2] ((2-NH2)TzICR) have been investigated by using density functional theory (DFT) method, and the solvent effect was also considered and calculated by conductor-like polarizable calculation model (CPCM). The structural characteristics and the detailed energy profiles for the hydrolysis processes of title complexes have been obtained. The analysis of thermodynamic and kinetic characteristics of hydrolysis reaction suggests the following: For the 1st hydrolysis step, the complex TzICR has a lower hydrolysis rate than the reported drug [ImH][trans-RuCl4Im2](ICR, Im=imidazole).

View Article and Find Full Text PDF

The thermodynamics of the binding of a series of structurally related Ru(II) antitumor complexes, that is, alpha-[Ru(azpy)2Cl2] 1, beta-[Ru(azpy)2Cl2] 2, alpha-[Ru(azpy)(bpy)Cl2] 3, and cis-[Ru(bpy)2Cl2] 4 to DNA purine bases (gunine, adenine at N7 site) has been studied by using the DFT method. The binding of imine form of 9-methyladenine (9-MeAde) to the Ru(II) moiety in a didentate fashion via its N6 and N7 atoms was also considered. The geometrical structures of the DNA model base adducts were obtained at the B3LYP/(LanL2DZ + 6-31G(d)) level in vacuo.

View Article and Find Full Text PDF

A series of mixed-valence rare earth borotungsto-heteropoly blues, K15H2[Ln(BW9W2O39)2].28H2O (Ln2, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd), have been prepared and characterized by IR, UV, XPS, ESR and electrochemistry. The cytotoxicity and antiviral activity of these rare earth borotungstate heteropoly blues were investigated against influenza A(FluVA) strain (A/H1N1/Jingfang/1/91 and A/H3N2/Jingfang/30/95) and influenza virus B(FluVB) (B/Hufang/1/87) in MDCK cells.

View Article and Find Full Text PDF

Two new Ru(II) complexes [Ru(L)(4)(dppz)](2+) (L=imidazole (Im), 1-methylimidazole (MeIm); dppz=dipyrido[3,2-a:2',3'-c]phenazine), have been synthesized and characterized in detail by elemental analysis, (1)H NMR, Electrospray ionization mass spectrometry (ESI-MS) and UV-visible (UV-Vis) spectroscopic techniques. The interaction of these complexes with calf thymus DNA (CT-DNA) has been explored by using electronic absorption titration, competitive binding experiment, circular dichroism (CD), thermal denaturation and viscosity measurements. The experimental results show that: both the two complexes can bind to DNA in an intercalation mode; the DNA-binding affinity of complex [Ru(Im)(4)(dppz)](2+)1 (K(b)=2.

View Article and Find Full Text PDF

Novel chiral Ru(II) complexes [Ru(bpy)2L]2+ (bpy = 2,2-bipyridine; L: o-mopip = 2-(2-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline, p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline) containing -OCH3 at different positions on the phenyl ring have been synthesized and characterized. The DNA-binding and DNA-photocleavage properties of the complexes were investigated. The theoretical calculations for these complexes were also carried out applying the density functional theory (DFT) method.

View Article and Find Full Text PDF