Publications by authors named "Lan-fen Li"

Background: The practical application of moisture sensitive metal organic frameworks (MOFs) in extraction technology faces challenges related to competitive adsorption and water stability. The target analytes cannot be effectively extracted under humid conditions due to the competitive moisture adsorption and/or framework structure collapse of MOFs. In this study, the microporous organic networks (MONs) were synthesized through Sonogashira coupling reaction to use for hydrophobic modification on the surface of MOF-199.

View Article and Find Full Text PDF

Jasmonates (JAs) are essential plant hormones that play important roles in the regulation of plant growth and the response to environmental stress. In the JA signaling pathway, the core transcription factors are a class of basic helix-loop-helix (bHLH) proteins, including MYC2, MYC3, and MYC4, that have different regulatory capacities. Here, we report the 2.

View Article and Find Full Text PDF

Cyclic dinucleotides (CDNs) and antitumor/antiviral agents (DMXAA and CMA) trigger STING-dependent innate immunity activation. Accumulative evidences have showed that DMXAA and CMA selectively activate mouse, but not human STING signaling. The mechanism underlying this species selectivity remains poorly understood.

View Article and Find Full Text PDF

Caspase 6 (CASP6) is a neuron degeneration-related protease and is widely considered to be a potential drug-design target against neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. The N-terminal pro-peptide of CASP6, also referred to as the pro-domain, contains 23 residues and its functional role remains elusive. In this study, the crystal structure of a full-length CASP6 zymogen mutant, proCASP6H121A, was solved.

View Article and Find Full Text PDF

Obtaining crystals presented a bottleneck in the structural study of Anabaena cyanobacterial Ca2+-binding protein (CcbP). In this report, the promoting effect of Ellman's reagent [5,5'-dithiobis(2-nitrobenzoic acid); DTNB] on the crystallization of CcbP is described. CcbP contains one free cysteine.

View Article and Find Full Text PDF

p90 ribosomal S6 kinases (RSKs) respond to various mitogen stimuli and comprise two distinct protein kinase domains. The C-terminal kinase domain (CTKD) receives signal from ERK1/2 and adopts an autoinhibitory mechanism. Here, the crystal structure of human RSK1 CTKD is reported at 2.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is a multiprotein complex containing eight subunits and is highly conserved from fungi to human. CSN is proposed to widely participate in many physiological processes, including protein degradation, DNA damage response and signal transduction. Among those subunits, only CSN5 and CSN6 belong to JAMM family.

View Article and Find Full Text PDF

The apoptotic effector caspase-6 (CASP6) has been clearly identified as a drug target due to its strong association with neurodegeneration and axonal pruning events as well as its crucial roles in Huntington disease and Alzheimer disease. CASP6 activity is suppressed by ARK5-mediated phosphorylation at Ser(257) with an unclear mechanism. In this work, we solved crystal structures of ΔproCASP6S257E and p20/p10S257E, which mimicked the phosphorylated CASP6 zymogen and activated CASP6, respectively.

View Article and Find Full Text PDF

The 23S rRNA nucleotide m(2)G2445 is highly conserved in bacteria, and in Escherichia coli this modification is added by the enzyme YcbY. With lengths of around 700 amino acids, YcbY orthologs are the largest rRNA methyltransferases identified in Gram-negative bacteria, and they appear to be fusions from two separate proteins found in Gram-positives. The crystal structures described here show that both the N- and C-terminal halves of E.

View Article and Find Full Text PDF

The crystal structures of two proteins, a putative pyrazinamidase/nicotinamidase from the dental pathogen Streptococcus mutans (SmPncA) and the human caspase-6 (Casp6), were solved by de novo arsenic single-wavelength anomalous diffraction (As-SAD) phasing method. Arsenic (As), an uncommonly used element in SAD phasing, was covalently introduced into proteins by cacodylic acid, the buffering agent in the crystallization reservoirs. In SmPncA, the only cysteine was bound to dimethylarsinoyl, which is a pentavalent arsenic group (As (V)).

View Article and Find Full Text PDF

In Escherichia coli, the BAM complex is employed to mediate correct folding of the outer membrane (OM) proteins into β-barrels and their insertion into the OM. BamA, which is an essential component of the complex, consists of a C-terminal transmembrane region and five N-terminal polypeptide transport-associated (POTRA) domains. Although deletion studies have shown that each of the POTRA domains plays an important role in the process of BAM complex formation, only POTRA5 is essential for cell viability.

View Article and Find Full Text PDF

Argininosuccinate lyase (ASL) is an important enzyme in arginine synthesis and the urea cycle, which are highly conserved from bacteria to eukaryotes. The gene encoding Streptococcus mutans ASL (smASL) was amplified and cloned into expression vector pET28a. The recombinant smASL protein was expressed in a soluble form in Escherichia coli strain BL21 (DE3) and purified to homogeneity by two-step column chromatography.

View Article and Find Full Text PDF

Streptococcus mutans is one of the pathogenic species involved in dental caries, especially in the initiation and development stages. Here, the crystal structure of SMU.595, a putative dihydroorotate dehydrogenase (DHOD) from S.

View Article and Find Full Text PDF

Streptococcus mutans SMU.1108c (KEGG database) encodes a functionally uncharacterized protein consisting of 270 amino-acid residues. This protein is predicted to have a haloacid dehalogenase hydrolase-like domain and is a homologue of haloacid dehalogenase phosphatases that catalyze phosphoryl-transfer reactions.

View Article and Find Full Text PDF

Dimeric effectors caspase 3 and caspase 7 are activated by initiator caspase processing. In this study, we report the crystal structures of effector caspase 6 (CASP6) zymogen and N-Acetyl-Val-Glu-Ile-Asp-al-inhibited CASP6. Both of these forms of CASP6 have a dimeric structure, and in CASP6 zymogen the intersubunit cleavage site (190)TEVD(193) is well structured and inserts into the active site.

View Article and Find Full Text PDF

Tubulin-folding cofactor A (TFC A) is a molecular post-chaperonin that is involved in the beta-tubulin-folding pathway. It has been identified in many organisms including yeasts, humans and plants. In this work, Arabidopsis thaliana TFC A was expressed in Escherichia coli and purified to homogeneity.

View Article and Find Full Text PDF

Microtubules are composed of polymerized alpha/beta-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures beta-tubulin during the folding pathway, has been identified in many organisms.

View Article and Find Full Text PDF
Article Synopsis
  • The SMU.2055 gene from Streptococcus mutans is thought to be an acetyltransferase and consists of 163 amino acids.
  • The gene was successfully cloned into a vector for protein expression, leading to the production of pure SMU.2055 proteins using E. coli.
  • Crystals of the SeMet-labelled protein were formed and analyzed, revealing specific structural characteristics with a resolution of 2.5 A in the orthorhombic space group C222(1).
View Article and Find Full Text PDF

Orotate phosphoribosyltransferase (OPRTase) catalyzes the OMP-forming step in de novo pyrimidine-nucleotide biosynthesis. Here, the crystal structure of OPRTase from the caries pathogen Streptococcus mutans is reported at 2.4 A resolution.

View Article and Find Full Text PDF

The punA gene of the cariogenic pathogen Streptococcus mutans encodes purine nucleoside phosphorylase (PNP), which is a pivotal enzyme in the nucleotide-salvage pathway, catalyzing the phosphorolysis of purine nucleosides to generate purine bases and alpha-ribose 1-phosphate. In the present work, the PNP protein was expressed in Escherichia coli strain BL21 (DE3) in a soluble form at a high level. After purification of the PNP enzyme, the protein was crystallized using the sitting-drop vapour-diffusion technique; the crystals diffracted to 1.

View Article and Find Full Text PDF

Recent studies have indicated that Staphylococcus aureus can survive the nitrosative stress (caused by the radical nitric oxide; NO.) mounted by the immune system of the infected host. It does this by expressing a nitric oxide-inducible L-lactate dehydrogenase (Sa-LDH-1).

View Article and Find Full Text PDF

Bacillus subtilis is one of the most studied gram-positive bacteria. In this work, YvgN and YtbE from B. subtilis, assigned as AKR5G1 and AKR5G2 of aldo-keto reductase (AKR) superfamily.

View Article and Find Full Text PDF

Glycinamide ribonucleotide transformylase (GART) catalyzes the transfer of a formyl group from formyl tetrahydrofolate (FTHF) to glycinamide ribonucleotide (GAR), which is an essential step in the de novo synthesis pathway of purines. In Bacillus subtilis, GART is encoded by the gene purN. In order to study the structure and function of B.

View Article and Find Full Text PDF

Despite impressive advances in theories, methods and technologies, crystallization still remains a serious bottleneck in structural determination of macromolecules. Here we present a novel solid-liquid interface method (SLIM) for protein crystallization, based on the pre-adding and drying of a crystallization reagent, and thereafter the dispensing of a protein solution to the dried media to initiate crystallization from the solid-liquid interface. Not only quick and easy to perform, the method also allows for a less concentrated protein solution for setting up crystallization trials.

View Article and Find Full Text PDF

Selenophosphate synthetase catalyzes the synthesis of the highly active selenium donor molecule selenophosphate, a key intermediate in selenium metabolism. We have determined the high-resolution crystal structure of human selenophosphate synthetase 1 (hSPS1). An unexpected reaction intermediate, with a tightly bound phosphate and ADP at the active site has been captured in the structure.

View Article and Find Full Text PDF