Acta Biochim Biophys Sin (Shanghai)
November 2024
PIWI-clade proteins harness piRNAs of 24-33 nt in length. Of great puzzles are how PIWI-clade proteins incorporate piRNAs of different sizes and whether the size matters to PIWI/piRNA function. Here we report that a PIWI-Ins module unique in PIWI-clade proteins helps define the length of piRNAs.
View Article and Find Full Text PDFSmall non-coding RNAs (sncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs), play essential roles in regulating various cellular and developmental processes. Over the past three decades, researchers have identified novel sncRNA species from various organisms. These molecules demonstrate dynamic expression and diverse functions, and they are subject to intricate regulation through RNA modifications in both healthy and diseased states.
View Article and Find Full Text PDFPostmeiotic spermatids use a unique strategy to coordinate gene expression with morphological transformation, in which transcription and translation take place at separate developmental stages, but how mRNAs stored as translationally inert messenger ribonucleoproteins in developing spermatids become activated remains largely unknown. Here, we report that the RNA binding protein FXR1, a member of the fragile X-related (FXR) family, is highly expressed in late spermatids and undergoes liquid-liquid phase separation (LLPS) to merge messenger ribonucleoprotein granules with the translation machinery to convert stored mRNAs into a translationally activated state. Germline-specific ablation in mice impaired the translation of target mRNAs and caused defective spermatid development and male infertility, and a phase separation-deficient FXR1 mutation in knock-in mice produced the same developmental defect.
View Article and Find Full Text PDFPIWI proteins and PIWI-interacting RNAs (piRNAs) are specifically expressed in animal germlines and play essential roles during gametogenesis in animals. The primary function of PIWI/piRNAs is known to silence transposable elements for protecting genome integrity in animal germlines, while their roles beyond silencing transposons are also documented by us and others. In particular, we show that mouse PIWIL1 (MIWI)/piRNAs play a dual role in regulating protein-coding genes in mouse spermatids through interacting with different protein factors in a developmental stage-dependent manner, including translationally activating a subset of AU-rich element-containing mRNAs in round spermatids and inducing massive mRNA degradation in late spermatids.
View Article and Find Full Text PDFInfertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction.
View Article and Find Full Text PDFThe mammalian epididymis not only plays a fundamental role in the maturation of spermatozoa, but also provides protection against various stressors. The foremost among these is the threat posed by oxidative stress, which arises from an imbalance in reactive oxygen species and can elicit damage to cellular lipids, proteins, and nucleic acids. In mice, the risk of oxidative damage to spermatozoa is mitigated through the expression and secretion of glutathione peroxidase 5 (GPX5) as a major luminal scavenger in the proximal caput epididymidal segment.
View Article and Find Full Text PDFThe paternal genome undergoes a massive exchange of histone with protamine for compaction into sperm during spermiogenesis. Upon fertilization, this process is potently reversed, which is essential for parental genome reprogramming and subsequent activation; however, it remains poorly understood how this fundamental process is initiated and regulated. Here, we report that the previously characterized splicing kinase SRPK1 initiates this life-beginning event by catalyzing site-specific phosphorylation of protamine, thereby triggering protamine-to-histone exchange in the fertilized oocyte.
View Article and Find Full Text PDFSpermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Heart performance relies on highly coordinated excitation-contraction (EC) coupling, and defects in this critical process may be exacerbated by additional genetic defects and/or environmental insults to cause eventual heart failure. Here we report a regulatory pathway consisting of the RNA binding protein RBFox2, a stress-induced microRNA miR-34a, and the essential EC coupler JPH2. In this pathway, initial cardiac defects diminish RBFox2 expression, which induces transcriptional repression of miR-34a, and elevated miR-34a targets to impair EC coupling, which further manifests heart dysfunction, leading to progressive heart failure.
View Article and Find Full Text PDFHigher eukaryotic genomes are bound by a large number of coding and non-coding RNAs, but approaches to comprehensively map the identity and binding sites of these RNAs are lacking. Here we report a method to capture in situ global RNA interactions with DNA by deep sequencing (GRID-seq), which enables the comprehensive identification of the entire repertoire of chromatin-interacting RNAs and their respective binding sites. In human, mouse, and Drosophila cells, we detected a large set of tissue-specific coding and non-coding RNAs that are bound to active promoters and enhancers, especially super-enhancers.
View Article and Find Full Text PDFMicroRNA (miRNA) biogenesis is known to be modulated by a variety of RNA-binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. Here, we report that the RNA-binding NONO-PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha-DGCR8 Microprocessor. NONO and PSF are key components of paraspeckles organized by the long noncoding RNA (lncRNA) NEAT1.
View Article and Find Full Text PDFGenetic studies have elucidated critical roles of Piwi proteins in germline development in animals, but whether Piwi is an actual disease gene in human infertility remains unknown. We report germline mutations in human Piwi (Hiwi) in patients with azoospermia that prevent its ubiquitination and degradation. By modeling such mutations in Piwi (Miwi) knockin mice, we demonstrate that the genetic defects are directly responsible for male infertility.
View Article and Find Full Text PDFBackground: Young neurons in the developing brain establish a polarized morphology for proper migration. The PIWI family of piRNA processing proteins are considered to be restrictively expressed in germline tissues and several types of cancer cells. They play important roles in spermatogenesis, stem cell maintenance, piRNA biogenesis, and transposon silencing.
View Article and Find Full Text PDFThe piRNA machinery is known for its role in mediating epigenetic silencing of transposons. Recent studies suggest that this function also involves piRNA-guided cleavage of transposon-derived transcripts. As many piRNAs also appear to have the capacity to target diverse mRNAs, this raises the intriguing possibility that piRNAs may act extensively as siRNAs to degrade specific mRNAs.
View Article and Find Full Text PDFSmall noncoding RNAs (ncRNAs) are a novel class of gene regulators that modulate gene expression at transcriptional, post-transcriptional, and epigenetic levels, and they play crucial roles in almost all cellular processes in eukaryotes. Recent studies have indicated that several types of small noncoding RNAs, including microRNAs (miRNAs), endo-small interference RNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs), are expressed in the male germline and are required for spermatogenesis in animals. In this review, we summarize the recent knowledge of these small noncoding RNAs in male germ cells and their biological functions and mechanisms of action in animal spermatogenesis.
View Article and Find Full Text PDFSpermatogenesis in mammals is characterized by two waves of piRNA expression: one corresponds to classic piRNAs responsible for silencing retrotransponsons and the second wave is predominantly derived from nontransposon intergenic regions in pachytene spermatocytes, but the function of these pachytene piRNAs is largely unknown. Here, we report the involvement of pachytene piRNAs in instructing massive mRNA elimination in mouse elongating spermatids (ES). We demonstrate that a piRNA-induced silencing complex (pi-RISC) containing murine PIWI (MIWI) and deadenylase CAF1 is selectively assembled in ES, which is responsible for inducing mRNA deadenylation and decay via a mechanism that resembles the action of miRNAs in somatic cells.
View Article and Find Full Text PDF