The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La-doped three-dimensionally ordered macroporous CeO (3D-CeLaO) were synthesized and applied as supports for Pt nanoparticles.
View Article and Find Full Text PDFAsymmetric catalysis is of crucial importance owing to the huge and rising demand for optically pure substances. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as two emerging crystalline porous materials, have presented great promising applications for heterogeneous asymmetric catalysis. The unique properties, such as, highly regular porous structures, prominent structural tunability, and well-ordered catalytic sites, render chiral MOFs (CMOFs) and chiral COFs (CCOFs) highly active and enantioselective for a large number of asymmetric catalytic organic transformations.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2020
To identify the intrinsic active sites in oxides or oxide supported catalysts is a research frontier in the fields of heterogeneous catalysis and material science. In particular, the role of oxygen vacancies on the redox properties of oxide catalysts is still not fully understood. Herein, some relevant research dealing with M-O-M or M-□-M linkages as active sites in mixed oxides, in oxide supported single-atom catalysts, and at metal/oxide interfaces of oxide supported nanometal catalysts for various reaction systems is reviewed.
View Article and Find Full Text PDFIt is known that the low lifetime of photogenerated carriers is the main drawback of elemental photocatalysts. Therefore, a facile and versatile one-step strategy to simultaneously achieve the oxygen covalent functionalization of amorphous red phosphorus (RP) and in situ modification of CdCO is reported. This strategy endows RP with enhanced charge carrier separation ability and photocatalytic activity by coupling band-gap engineering and heterojunction construction.
View Article and Find Full Text PDFA germacrane sesquiterpenoid library containing 30 compounds (-) was constructed by structural modification of a major component aristolactone () from the traditional Chinese medicine . Compound was identified as a promising anticardiac fibrosis agent by systematic screening of this library. could inhibit the expression of fibronectin (FN), α-smooth muscle actin (α-SMA), and collagens in transforming growth factor β 1 (TGFβ1)-stimulated cardiac fibroblasts at a micromolar level and ameliorate myocardial fibrosis and heart function in abdominal aortic constriction (AAC) rats at 5 mg/kg dose.
View Article and Find Full Text PDFCardiac fibrosis contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. Antifibrotic therapies are likely to be a crucial strategy in curbing many fibrosis-related cardiac diseases. In our previous study, an ethyl acetate extract of a traditional Chinese medicine Aristolochia yunnanensis Franch.
View Article and Find Full Text PDFTwo polyprenylated acylcyclopentanone racemates, evodialones A (1) and B (2), featuring a 3-ethyl-1,1-diisopentyl-4-methylcyclopentane skeleton, were isolated from an extract of the aerial parts of Evodia lepta. Evodialone A (1) was resolved by chiral-phase HPLC to afford a pair of enantiomers, (+)- and (-)-evodialones A (1b/1a), while evodialone B (2) could not be resolved. Their structures were elucidated by spectroscopic analysis and a combination of computational techniques including gauge-independent atomic orbital calculation of 1D NMR data and experimental and TDDFT-calculated ECD spectra.
View Article and Find Full Text PDFThe bioassay-guided phytochemical study of a traditional Chinese medicine Morus alba led to the isolation of 18 prenylated flavonoids (1-18), of which (±)-cyclomorusin (1/2), a pair of enantiomers, and 14-methoxy-dihydromorusin (3) are the new ones. Subsequent structural modification of the selected components by methylation, esterification, hydrogenation, and oxidative cyclization led to 14 more derivatives (19-32). The small library was screened for its inhibition against phosphodiesterase-4 (PDE4), which is a drug target for the treatment of asthma and chronic obstructive pulmonary disease (COPD).
View Article and Find Full Text PDFTwo novel biscembranoids, sarelengans A and B ( and ), five new cembranoids, sarelengans C-G (-), along with two known cembranoids ( and ) were isolated from the South China Sea soft coral . Their structures were determined by spectroscopic and chemical methods, and those of , , , and were confirmed by single crystal X-ray diffraction. Compounds and represent the first example of biscembranoids featuring a -fused A/B-ring conjunction between the two cembranoid units.
View Article and Find Full Text PDFWe previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study.
View Article and Find Full Text PDFFive new lanostane-type triterpenoids, ganoderenses A-E (1-5), two new lanostane nor-triterpenoids, ganoderenses F and G (6 and 7), along with 13 known analogues (8-20) were isolated from the fruiting body of Ganoderma hainanense. Their structures were determined by combined chemical and spectral methods, and the absolute configurations of compounds 1 and 13 were confirmed by single crystal X-ray diffraction. All compounds were evaluated for inhibitory activity against thioredoxin reductase (TrxR), a potential target for cancer chemotherapy with redox balance and antioxidant functions, but were inactive.
View Article and Find Full Text PDFThe polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber.
View Article and Find Full Text PDF