Publications by authors named "Lan Wei-Lapierre"

Article Synopsis
  • Mitochondrial dysfunction is an early issue in ALS, and this study investigates the potential of 2,4-dinitrophenol (DNP), a mitochondrial uncoupler, as a treatment for ALS in a mouse model.
  • Mice were given varying doses of DNP from early stages of the disease, and their motor skills and muscle function were assessed regularly, showing improvements in coordination, muscle performance, and reduced inflammation.
  • The findings suggest that DNP can delay disease onset and even lead to recovery in motor abilities for symptomatic mice, indicating its potential as a novel treatment option for ALS if properly timed and dosed.
View Article and Find Full Text PDF
Article Synopsis
  • Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is linked to mutations in the CAPN3 gene, which encodes Calpain 3, a protease critical for muscle function and calcium regulation.
  • Research using both Capn3 deficient (C3KO) and wild-type (WT) mice revealed that the absence of Calpain 3 resulted in increased resting calcium levels and altered Store-Operated Calcium Entry (SOCE) activity.
  • After exercise, C3KO mice demonstrated reduced muscle force and impaired calcium dynamics, highlighting that the dysregulation of SOCE due to the loss of Calpain 3 contributes significantly to LGMD R1/2
View Article and Find Full Text PDF

Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle.

View Article and Find Full Text PDF

The inhibitor of store-operated Ca2+ entry (SOCE) BTP2 was reported to inhibit ryanodine receptor Ca2+ leak and electrically evoked Ca2+ release from the sarcoplasmic reticulum when introduced into mechanically skinned muscle fibers. However, it is unclear how effects of intracellular application of a highly lipophilic drug like BTP2 on Ca2+ release during excitation-contraction (EC) coupling compare with extracellular exposure in intact muscle fibers. Here, we address this question by quantifying the effect of short- and long-term exposure to 10 and 20 µM BTP2 on the magnitude and kinetics of electrically evoked Ca2+ release in intact mouse flexor digitorum brevis muscle fibers.

View Article and Find Full Text PDF

Paucity of the survival motor neuron (SMN) protein triggers the oft-fatal infantile-onset motor neuron disorder, spinal muscular atrophy (SMA). Augmenting the protein is one means of treating SMA and recently led to FDA approval of an intrathecally delivered SMN-enhancing oligonucleotide currently in use. Notwithstanding the advent of this and other therapies for SMA, it is unclear whether the paralysis associated with the disease derives solely from dysfunctional motor neurons that may be efficiently targeted by restricted delivery of SMN-enhancing agents to the nervous system, or stems from broader defects of the motor unit, arguing for systemic SMN repletion.

View Article and Find Full Text PDF

overnutrition can predispose offspring to metabolic disease. Although the mechanisms are unclear, increased oxidative stress accelerating cellular aging has been shown to play a role. Mitochondria are the main site of reactive oxygen species (ROS) production in most cell types.

View Article and Find Full Text PDF
Article Synopsis
  • RYR1-related myopathies (RYR1 RM) are the most common childhood onset non-dystrophic muscle disorders, with no available treatments and a significant barrier to research due to the absence of appropriate animal models.
  • Researchers created a new mouse model (Ryr1TM/Indel) using CRISPR/Cas9 gene editing to replicate a severe form of RYR1 RM by introducing specific genetic mutations.
  • The Ryr1TM/Indel mice display symptoms like reduced muscle mass and activity starting from 14 days old, leading to a median lifespan of 42 days, making them a valuable model for studying disease mechanisms and testing potential therapies.
View Article and Find Full Text PDF

Wei-LaPierre and Dirksen discuss new work investigating the molecular events underlying mitoflash biogenesis.

View Article and Find Full Text PDF

Mitochondrial flashes (mitoflashes) are stochastic events in the mitochondrial matrix detected by mitochondrial-targeted cpYFP (mt-cpYFP). Mitoflashes are quantal bursts of reactive oxygen species (ROS) production accompanied by modest matrix alkalinization and depolarization of the mitochondrial membrane potential. Mitoflashes are fundamental events present in a wide range of cell types.

View Article and Find Full Text PDF

Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015).

View Article and Find Full Text PDF

The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC)-coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins.

View Article and Find Full Text PDF

Significance: Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo.

View Article and Find Full Text PDF

Skeletal muscle maintenance depends on motor innervation at neuromuscular junctions (NMJs). Multiple mechanisms contribute to NMJ repair and maintenance; however muscle stem cells (satellite cells, SCs), are deemed to have little impact on these processes. Therefore, the applicability of SC studies to attenuate muscle loss due to NMJ deterioration as observed in neuromuscular diseases and aging is ambiguous.

View Article and Find Full Text PDF

Background: Mice lacking calsequestrin-1 (CASQ1-null), a Ca-binding protein that modulates the activity of Ca release in the skeletal muscle, exhibit lethal hypermetabolic episodes that resemble malignant hyperthermia in humans when exposed to halothane or heat stress.

Methods: Because oxidative species may play a critical role in malignant hyperthermia crises, we treated CASQ1-null mice with two antioxidants, N-acetylcysteine (NAC, Sigma-Aldrich, Italy; provided ad libitum in drinking water) and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, Sigma-Aldrich; administered by intraperitoneal injection), before exposure to halothane (2%, 1 h) or heat (41°C, 1 h).

Results: NAC and Trolox significantly protected CASQ1-null mice from lethal episodes, with mortality being 79% (n = 14), 25% (n = 16), and 20% (n = 5) during halothane exposure and 86% (n = 21), 29% (n = 21), and 33% (n = 6) during heat stress in untreated, NAC-treated, and Trolox-treated mice, respectively.

View Article and Find Full Text PDF

Background: Mutations in the gene encoding ryanodine receptor type-1 (RYR1), the calcium ion (Ca (2+)) release channel in the sarcoplasmic reticulum (SR) of skeletal muscle, are linked to central core disease (CCD) and malignant hyperthermia (MH) susceptibility. We recently reported that mice lacking the skeletal isoform of calsequestrin (CASQ1-null), the primary Ca (2+) buffer in the SR of skeletal muscle and a modulator of RYR1 activity, exhibit lethal heat- and anesthetic-induced hypermetabolic episodes that resemble MH events in humans.

Methods: We compared ultrastructure, oxidative status, and contractile function in skeletal fibers of extensor digitorum longus (EDL) muscles in wild type (WT) and CASQ1-null mice at different ages (from 4 to 27 months) using structural, biochemical, and functional assays.

View Article and Find Full Text PDF

We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.

View Article and Find Full Text PDF

Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy.

View Article and Find Full Text PDF

Store-operated Ca²⁺ entry (SOCE) in skeletal muscle involves signalling between stromal-interacting molecule 1 (STIM1) in the sarcoplasmic reticulum (SR) and Ca²⁺ selective Orai1 channels in the sarcolemma. Here we generate transgenic mice with muscle-specific expression of dominant-negative Orai1 (dnOrai1) and demonstrate that Orai1-dependent SOCE promotes growth and limits fatigue in adult skeletal muscle. dnOrai1 mice lack SOCE specifically in muscle but are fertile and thrive well into adulthood.

View Article and Find Full Text PDF

Superoxide flashes are transient bursts of superoxide production within the mitochondrial matrix that are detected using the superoxide-sensitive biosensor, mitochondria-targeted circularly permuted YFP (mt-cpYFP). However, due to the pH sensitivity of mt-cpYFP, flashes were suggested to reflect transient events of mitochondrial alkalinization. Here, we simultaneously monitored flashes with mt-cpYFP and mitochondrial pH with carboxy-SNARF-1.

View Article and Find Full Text PDF