The sorption of antibiotics on soil minerals and their cotransport have been widely studied for the past few years; however, these processes in concentrated salt solutions (estuary-like conditions) are not fully understood. This study aims to determine the possible sorption of oxytetracycline (OTC) on various natural and synthesized microsized minerals (including haematite, goethite, kaolinite, bentonite, lateritic, kaolinitic and illitic soil clays) under conditions mimicking pure, fresh, brackish and sea waters. The sorption of OTC was found to decrease in surface charge (herein zeta potential), hence altering the colloidal properties of the materials used.
View Article and Find Full Text PDFThe increasing daily use of cosmetic and personal care ingredients (CPCIs) requires improved understanding of the fate and impacts of CPCIs in environmental systems. Effects of CPCIs on colloidal properties of various geocolloids such as iron oxides (goethite, haematite), clay minerals (kaolinite, bentonite) and soil clays (kaolinitic-, illitic- and lateritic soil clays) were studied by tracking time-resolved changes in zeta potential (ζ) and observing suspended particle density. Two polymers representing anionic CPCIs, i.
View Article and Find Full Text PDFColloid-sized microplastics (MPs) are ubiquitous in aquatic environments and can share the same transport route together with various crystalline, poorly crystalline and freshly formed iron oxides. However, the colloidal interactions between these colloid constituents are not fully understood. This study was designed to investigate the colloidal properties of polystyrene microplastics (PSMPs) under the influence of haematite, goethite, ferrihydrite and freshly formed Fe oxide (FFFO).
View Article and Find Full Text PDF