Publications by authors named "Lampin J"

Article Synopsis
  • Spintronic terahertz emitters (STEs) are powerful terahertz sources that can operate across a wide range of pumping frequencies, yet their performance is ultimately limited by their optical damage threshold.
  • Recent advancements in technology require STEs to pump at higher megahertz rates rather than the traditional kilohertz rates, highlighting a gap in research on this topic.
  • The study introduces a new classification of the optical damage threshold based on repetition rates and identifies temperature-driven inter-layer diffusion as the main failure cause, offering insights for improving STE performance in future applications.
View Article and Find Full Text PDF

We investigated the near-field distribution associated to the photonic mode of terahertz photonic micro-resonators by scattering scanning near-field optical microscopy. Probing individual THz micro-resonators concentrating electric fields is important for high-sensitivity chemical and biochemical sensing and fundamental light-matter interactions studies at the nanoscale. We imaged both electric field concentration predicted by numerical simulations and unexpected patterns that deviate from intuitive assumptions.

View Article and Find Full Text PDF

Synchrotron radiation (SR) has proven to be an invaluable contributor to the field of molecular spectroscopy, particularly in the terahertz region (1-10 THz) where its bright and broadband properties are currently unmatched by laboratory sources. However, measurements using SR are currently limited to a resolution of around 30 MHz, due to the limits of Fourier-transform infrared spectroscopy. To push the resolution limit further, we have developed a spectrometer based on heterodyne mixing of SR with a newly available THz molecular laser, which can operate at frequencies ranging from 1 to 5.

View Article and Find Full Text PDF

Dielectric waveguides are capable of confining and guiding terahertz waves along sub-wavelength sized structures. A small feature size allows for a denser integration of different photonic components such as modulators, beam-splitters, wavelength (de)multiplexers and more. The integration of components on a small scale requires bending of the waveguides.

View Article and Find Full Text PDF

Mode-locking operation and multimode instabilities in Terahertz (THz) quantum cascade lasers (QCLs) have been intensively investigated during the last decade. These studies have unveiled a rich phenomenology, owing to the unique properties of these lasers, in particular their ultrafast gain medium. Thanks to this, in QCLs a modulation of the intracavity field intensity gives rise to a strong modulation of the population inversion, directly affecting the laser current.

View Article and Find Full Text PDF

A design and multiphysical model is presented for an on-chip gas sensor that transduces terahertz gas absorption through sound generation into a mechanical motion that can be read out externally. The signal is triply enhanced by designing a structure that functions simultaneously as an optical, an acoustical and a mechanical resonator. The structure is made in high-resistivity silicon and can be fabricated using CMOS and MEMS fabrication technologies.

View Article and Find Full Text PDF

We report the measurement of the frequency noise power spectral density (PSD) of a Terahertz (THz) molecular laser (ML) pumped by a mid-infrared (MIR) quantum cascade laser (QCL), and emitting 1 mW at 1.1THz in continuous wave. This is achieved by beating the ML frequency with the 1080 harmonic of the repetition rate of a 1560 nm frequency comb (FC).

View Article and Find Full Text PDF

A new spectrometer allowing both high resolution and broadband coverage in the terahertz (THz) domain is proposed. This instrument exploits the heterodyne technique between broadband synchrotron radiation and a quantum-cascade-laser-based molecular THz laser that acts as the local oscillator. Proof of principle for exploitation for spectroscopy is provided by the recording of molecular absorptions of hydrogen sulfide (HS) and methanol (CHOH) around 1.

View Article and Find Full Text PDF

Correction for 'Transport mechanisms in a puckered graphene-on-lattice' by T. Xu et al., Nanoscale, 2018, 10, 7519-7525.

View Article and Find Full Text PDF
Article Synopsis
  • * Pure inversion transitions of NH molecules at specific frequencies (1.073 THz and 1.083 THz) were measured with THz frequency equipment under different conditions, including varying gas pressures and MIR tuning.
  • * The researchers achieved notable gains, with a peak of 10.1 dB×m at room temperature for the (3,3) transition and 6.4 dB×m for the (4,4) transition, marking some of the highest continuous-wave THz
View Article and Find Full Text PDF

Understanding the fundamental properties of graphene when its topography is patterned by the use of a compliant substrate is essential to improve the performances of graphene sensors. Here we suspend a graphene monolayer on SiO2 nanopillar arrays to form a puckered graphene-on-lattice and investigate the strain and electrical transport at the nanoscale. Despite a nonuniform strain in the graphene-on-lattice, the resistivity is governed by thermally activated transport and not the strain.

View Article and Find Full Text PDF

The structural and electronic properties of nonstoichiometric low-temperature grown GaAs nanowire shells have been investigated with scanning tunneling microscopy and spectroscopy, pump-probe reflectivity, and cathodoluminescence measurements. The growth of nonstoichiometric GaAs shells is achieved through the formation of As antisite defects, and to a lower extent, after annealing, As precipitates. Because of the high density of atomic steps on the nanowire sidewalls, the Fermi level is pinned midgap, causing the ionization of the subsurface antisites and the formation of depleted regions around the As precipitates.

View Article and Find Full Text PDF

Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz.

View Article and Find Full Text PDF

We demonstrate an integrated distributed feedback (DFB) laser array as a dual-wavelength source for narrowband terahertz (THz) generation. The laser array is composed of four heterogeneously integrated III-V-on-silicon DFB lasers with different lengths enabling dual-mode lasing tolerant to process variations, bias fluctuations, and ambient temperature variations. By optical heterodyning the two modes emitted by the dual-wavelength DFB laser in the laser array using a THz photomixer composed of an uni-traveling carrier photodiode (UTC-PD), a narrow and stable carrier signal with a frequency of 0.

View Article and Find Full Text PDF

The dispersion relation and confinement of terahertz surface plasmon modes propagating along planar Goubau lines are studied using guided-wave time domain spectroscopy. We demonstrate the radial nature of the surface plasmon mode known as the Goubau mode and the transverse confinement of the electric field over a few tenths of microns (~l/10). We experimentally and computationally observed a transition of the shape of the THz pulses from unipolar to bipolar as the propagation distance increases, indicating that the Goubau line acts as a high-pass filter.

View Article and Find Full Text PDF

We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

View Article and Find Full Text PDF

Thanks to a portable dual-frequency Brillouin fiber laser and a 1.55 μm photomixer, we report the generation of a highly coherent kilohertz level submillimeter wave emission. Low-cost telecommunications components are used to achieve very simple source architecture.

View Article and Find Full Text PDF

We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer.

View Article and Find Full Text PDF

A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke.

View Article and Find Full Text PDF

We present a detailed study of the effect of the carrier lifetime on the terahertz signal characteristics emitted by Br(+)-irradiated In(0.53)Ga(0.47)As photoconductive antennas excited by 1550 nm wavelength femtosecond optical pulses.

View Article and Find Full Text PDF

We report the first demonstration of a terahertz photomixer made of ion-irradiated In(0.53)Ga(0.47)As lattice-matched to InP and fiber-optic coupled with the drive lasers.

View Article and Find Full Text PDF