Publications by authors named "Lampen J"

We generate bandwidth limited 10 µJ pulses of 92 fs pulse width using an adaptive fiber Bragg grating stretcher (FBG) in conjunction with a Lyot filter. The temperature controlled FBG is used to optimize the group delay, whereas the Lyot filter counteracts gain narrowing in the amplifier chain. Soliton compression in a hollow core fiber (HCF) allows for access to the few-cycle pulse regime.

View Article and Find Full Text PDF

Hanbury Brown-Twiss interference and stimulated emission, two fundamental processes in atomic physics, have been studied in a wide range of applications in science and technology. We study interference effects that occur when a weak probe is sent through a gas of two-level atoms that are prepared in a singly excited collective (Dicke or "superatom") state and for atoms prepared in a factorized state. We measure the time-integrated second-order correlation function g^{(2)} of the output field as a function of the delay τ between the input probe field and radiation emitted by the atoms and find that, for the Dicke state, g^{(2)} is twice as large for τ=0 as it is for γ_{e}τ≫1 (γ_{e} is an excited state decay rate), while for the product state, this ratio is equal to 3/2.

View Article and Find Full Text PDF

Rhythm is an important aspect of both human speech and birdsong. Adult zebra finches show increased neural activity following exposure to arrhythmic compared to rhythmic song in regions similar to the mammalian auditory association cortex and amygdala. This pattern may indicate that birds are detecting errors in the arrhythmic song relative to their learned song template or to more general expectations of song structure.

View Article and Find Full Text PDF

Oestradiol is abundant in the zebra finch auditory forebrain and has the capacity to modulate neural responses to auditory stimuli with specificity as a result of both hemisphere and sex. Arrhythmic song induces greater ZENK expression than rhythmic song in the caudomedial nidopallium (NCM), caudomedial mesopallium (CMM) and nucleus taeniae (Tn) of adult zebra finches. The increases in the auditory regions (i.

View Article and Find Full Text PDF

Rhythm is important in the production of motor sequences such as speech and song. Deficits in rhythm processing have been implicated in human disorders that affect speech and language processing, including stuttering, autism, and dyslexia. Songbirds provide a tractable model for studying the neural underpinnings of rhythm processing due to parallels with humans in neural structures and vocal learning patterns.

View Article and Find Full Text PDF

During development, male zebra finches learn a song that they eventually use in courtship and defense of nest sites. Norepinephrine (NE) is important for learning and memory in vertebrates, and this neuromodulator and its receptors are present throughout the brain regions that control song learning and production. The present study used the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4) to reduce brain levels of NE in juvenile males.

View Article and Find Full Text PDF

Prediction of speed skating performance with a power balance model requires assumptions about the kinetics of energy production, skating efficiency, and skating technique. The purpose of this study was to evaluate these parameters during competitive imitations for the purpose of improving model predictions. Elite speed skaters (n = 8) performed races and submaximal efficiency tests.

View Article and Find Full Text PDF

Concepts of how athletes should expend their aerobic and anaerobic energetic reserves are generally based on results of tests where an "all out" strategy is imposed on/required from the athlete. We sought to determine how athletes spontaneously expend their energetic reserves when the only instruction was to finish the event in minimal time, as in competition. Well trained, and task habituated, road cyclists (N = 14) completed randomly ordered laboratory time trials of 500 m, 1000 m, 1500 m and 3000 m on a windload braked cycle ergometer.

View Article and Find Full Text PDF

Purpose: To determine how athletes spontaneously use their energetic reserves when the only instruction was to finish in minimal time, and whether experience from repeated performance changes the strategy of recreational athletes.

Methods: Recreational road cyclists/speed skaters (N = 9) completed three laboratory time trials of 1500 m on a windload braked cycle. The pattern of energy use was calculated from total work and from the work attributable to aerobic metabolism, which allowed computation of anaerobic energy use.

View Article and Find Full Text PDF

Prediction studies, conformational analyses and membrane-topology mapping lead to the conclusion that the penicillin sensory transducer, BlaR, involved in the inducibility of beta-lactamase synthesis in Bacillus licheniformis, is embedded in the plasma membrane bilayer via four transmembrane segments TM1-TM4 that form a four-alpha-helix bundle. The extracellular 262-amino-acid-residue polypeptide, S340-R601, that is fused at the carboxy end of TM4, possesses the amino acid sequence signature of a penicilloyl serine transferase. It probably functions as penicillin sensor.

View Article and Find Full Text PDF

The membrane-spanning protein BlaR is essential for the induction of beta-lactamase in Bacillus licheniformis. Its nature and location were confirmed by the use of an antiserum specific for its carboxy-terminal penicillin sensor, its function was studied by genetic dissection, and the structure of the penicillin sensor was derived from hydrophobic cluster analysis of the amino acid sequence by using, as a reference, the class A beta-lactamases with known three-dimensional structures. During the first 2 h after the addition of the beta-lactam inducer, full-size BlaR, bound to the plasma membrane, is produced, and then beta-lactamase is produced.

View Article and Find Full Text PDF

A cloning vector has been constructed which allows production and export by Escherichia coli of the Met346-Arg601 carboxy terminal domain of the 601 amino acid BLAR sensory-transducer involved in beta-lactamase inducibility in Bacillus licheniformis. The polypeptide, referred to as BLAR-CTD, accumulates in the periplasm of E. coli in the form of a water-soluble, Mr 26,000 penicillin-binding protein.

View Article and Find Full Text PDF

The blaR gene of Bacillus licheniformis encodes the signal transducer for induction of the class A beta-lactamase. The protein product, BlaR, has a hydrophilic carboxy region that binds beta-lactams and shows high sequence homology to the class D beta-lactamases, particularly the OXA-2 beta-lactamase of Salmonella typhimurium. The BlaR-beta-lactam complex is stable and may provide the continuing stimulus needed for the prolonged production of the enzyme.

View Article and Find Full Text PDF

BlaI repressor for the beta-lactamase gene (blaP) of Bacillus licheniformis 749, was shown to repress expression of blaP and of the repressor gene (blaI), using the purified protein in a DNA-directed in vitro translation assay. Binding of BlaI to the promoter regions of blaP and blaI was examined by equilibrium and competitive binding assays. BlaI binds to the blaP promoter with an equal or only slightly higher affinity than to the blaI promoter.

View Article and Find Full Text PDF

Induction of beta-lactamase (blaP) in Bacillus licheniformis involves the regulatory genes blaI (repressor), blaR1 (coinducer) and R2 (function unknown). Transcription of the bla genes during induction was followed by Northern hybridization. In the first 30 min 2.

View Article and Find Full Text PDF

A second regulatory locus (blaR1) required for the induction of beta-lactamase synthesis in Bacillus licheniformis 749 was cloned and sequenced. The gene was located on a 5.2-kilobase-pair SphI DNA fragment which also contained the beta-lactamase (blaP) and repressor (blaI) genes.

View Article and Find Full Text PDF

The repressor gene, blaI, for the beta-lactamase of Bacillus licheniformis 749 was functional when cloned in Escherichia coli, but addition of a beta-lactam did not lead to induction. One plasmid contained fragments from the inducible strain (source of repressor), the other carried fragments from the blaI- mutant 749/C (target). blaI lies just 5' to the promoter for the structural gene, blaP, and the target is the promoter region between the two genes.

View Article and Find Full Text PDF

The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S.

View Article and Find Full Text PDF

It has not been clear whether the membrane-bound beta-lactamase III of Bacillus cereus 569 is a separate enzyme or a modified form of the secreted beta-lactamase I. The membrane enzyme is an acyl-glyceride thioether-linked lipoprotein (J. B.

View Article and Find Full Text PDF

The expression of the blaP gene for the beta-lactamase of Bacillus licheniformis was examined by transcriptional analyses. Radiolabeled probes containing the blaP gene or various regions 3' or 5' to it were used to analyze RNA samples prepared from induced and uninduced cultures of wild-type and mutant B. licheniformis strains.

View Article and Find Full Text PDF

This paper reports the initial findings of a follow-up study of the 75 young men who were admitted in their early teens to a residential school for maladjusted boys over a five year period. Sixty were traced and interviewed in depth, using an approach based on methods established at the Institute of Psychiatry. A structured interview was used which covered the individual's recollections of family, peer experiences, schools and adult life, with a special section on the residential therapeutic environment.

View Article and Find Full Text PDF

The beta-lactamases of Bacillus cereus have attracted interest because they are secreted efficiently, because multiple enzymes are frequently present, and because their regulation has unusual features. beta-Lactamase I of strain 5/B is produced constitutively at a high level, and the exoenzyme appears to be several thousand daltons larger than the corresponding product of strain 569/H. We have cloned the gene for 5/B beta-lactamase I in Escherichia coli and B.

View Article and Find Full Text PDF