Publications by authors named "Lamond A"

Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins.

View Article and Find Full Text PDF

mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components.

View Article and Find Full Text PDF

While a large proportion of the population in Papua New Guinea (PNG) maintain a subsistence lifestyle, exposure to modernisation and industrialisation since European contact has influenced a transition towards Western diets. This review aimed to scope and summarise the published research on dietary intake among Pacific Islander adults in PNG. Four electronic databases and grey literature were searched.

View Article and Find Full Text PDF

Understanding how chromatin organisation is duplicated on the two daughter strands is a central question in epigenetics. In mammals, following the passage of the replisome, nucleosomes lose their defined positioning and transcription contributes to their re-organisation. However, whether transcription plays a greater role in the organization of chromatin following DNA replication remains unclear.

View Article and Find Full Text PDF

Background: Neutrophils are important in the pathophysiology of coronavirus disease 2019 (COVID-19), but the molecular changes contributing to altered neutrophil phenotypes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We used quantitative mass spectrometry-based proteomics to explore neutrophil phenotypes immediately following acute SARS-CoV-2 infection and during recovery.

Methods: Prospective observational study of hospitalised patients with PCR-confirmed SARS-CoV-2 infection (May to December 2020).

View Article and Find Full Text PDF

FAM111A is a replisome-associated protein and dominant mutations within its trypsin-like peptidase domain are linked to severe human developmental syndrome, the Kenny-Caffey syndrome. However, FAM111A functions remain unclear. Here, we show that FAM111A facilitates efficient activation of DNA replication origins.

View Article and Find Full Text PDF

Methylation of carbon-5 of cytosines (m C) is a conserved post-transcriptional nucleotide modification of RNA with widespread distribution across organisms. It can be further modified to yield 5-hydroxymethylcytidine (hm C), 5-formylcytidine (f C), 2´-O-methyl-5-hydroxymethylcytidine (hm Cm) and 2´-O-methyl-5-formylcytidine (f Cm). How m C, and specially its derivates, contribute to biology mechanistically is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The Novo Nordisk Foundation has decided to stop funding the Center for Protein Research in Copenhagen.
  • This decision raises questions about the level of commitment both public and private sectors have towards supporting fundamental scientific research.
  • The situation highlights the importance of ongoing discussions about how to ensure adequate funding for vital research initiatives.
View Article and Find Full Text PDF

Chromatin organization must be maintained during cell proliferation to preserve cellular identity and genome integrity. However, DNA replication results in transient displacement of DNA-bound proteins, and it is unclear how they regain access to newly replicated DNA. Using quantitative proteomics coupled to Nascent Chromatin Capture or isolation of Proteins on Nascent DNA, we provide time-resolved binding kinetics for thousands of proteins behind replisomes within euchromatin and heterochromatin in human cells.

View Article and Find Full Text PDF
Article Synopsis
  • HSP90 is a molecular chaperone that stabilizes proteins linked to cancer, with its inhibitors disrupting various cellular protein networks and signaling pathways.
  • A study used size-exclusion chromatography and mass spectrometry to examine how the HSP90 inhibitor tanespimycin affects protein complexes in colon cancer cells over 8 hours.
  • Findings showed only slight changes in protein distributions but identified new modulated proteins, which may provide valuable insights for cancer research and understanding protein stabilization processes.
View Article and Find Full Text PDF

To overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity.

View Article and Find Full Text PDF

Tissue-resident intestinal intraepithelial T lymphocytes (T-IEL) patrol the gut and have important roles in regulating intestinal homeostasis. T-IEL include both induced T-IEL, derived from systemic antigen-experienced lymphocytes, and natural T-IEL, which are developmentally targeted to the intestine. While the processes driving T-IEL development have been elucidated, the precise roles of the different subsets and the processes driving activation and regulation of these cells remain unclear.

View Article and Find Full Text PDF

Polysome profile analysis is a popular method for separating polysomes and ribosomal subunits and is typically achieved using a sucrose density gradient (SDG). This has remained the gold standard method since ribosomes were first discovered; however, this method is time-consuming and requires multiple steps from making the gradient and long ultracentrifugation to collecting and analyzing the fractions. Each of these steps in the SDG workflow can introduce potential technical variation that affects the reproducibility of gradient profiles between samples.

View Article and Find Full Text PDF
Article Synopsis
  • The m7G cap is crucial for RNA produced by RNA Polymerase II and is important for gene expression in eukaryotes, but its specific function in mammals was previously unclear.
  • Researchers found that the methyltransferase RNMT plays a significant role in T cell activation by regulating the production of mRNA and ribosomes, which are essential for metabolic changes and rapid cell division.
  • RNMT's induction during T cell receptor stimulation leads to increased expression of certain mRNAs and snoRNAs, vital for ribosome biogenesis, and its absence results in decreased ribosome production and impaired T cell proliferation.
View Article and Find Full Text PDF

X chromosome inactivation (XCI) is a dosage compensation mechanism in female mammals whereby transcription from one X chromosome is repressed. Analysis of human induced pluripotent stem cells (iPSCs) derived from female donors identified that low levels of XIST RNA correlated strongly with erosion of XCI. Proteomic analysis, RNA sequencing (RNA-seq), and polysome profiling showed that XCI erosion resulted in amplified RNA and protein expression from X-linked genes, providing a proteomic characterization of skewed dosage compensation.

View Article and Find Full Text PDF

This report describes the variation in presentation of two unrelated patients found to have a rare form of presynaptic congenital myasthenic syndrome. Both patients presented with hypotonia, ptosis, poor weight gain and apneic episodes. Through whole exome sequencing, our patients were found to have the same likely pathogenic biallelic variants in W315X and I200N of , encoding vesicular acetylcholine transporter (VAChT).

View Article and Find Full Text PDF

Membraneless organelles are sites for RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. We investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule in Caenorhabditis elegans.

View Article and Find Full Text PDF

Human disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines.

View Article and Find Full Text PDF

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry.

View Article and Find Full Text PDF

Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling.

View Article and Find Full Text PDF

Laser-capture microdissection (LCM) allows the visualization and isolation of morphologically distinct subpopulations of cells from heterogeneous tissue specimens. In combination with formalin-fixed and paraffin-embedded (FFPE) tissue it provides a powerful tool for retrospective and clinically relevant studies of tissue proteins in a healthy and diseased context. We first optimized the protocol for efficient LCM analysis of FFPE tissue specimens.

View Article and Find Full Text PDF

Atopic eczema is an itchy inflammatory disorder characterised by skin barrier dysfunction. Loss-of-function mutations in the gene encoding filaggrin ( ) are a major risk factor, but the mechanisms by which filaggrin haploinsufficiency leads to atopic inflammation remain incompletely understood. Skin as an organ that can be modelled using primary cells provides the opportunity for selected genetic effects to be investigated in detail.

View Article and Find Full Text PDF