This review examines the techno-functional properties of lactic acid bacteria (LABs) in the food industry, focusing on their potential health benefits. We discuss current findings related to the techno-functionality of LAB, which includes acidification, proteolytic and lipolytic features, and a variety of other biochemical activities. These activities include the production of antimicrobial compounds and the synthesis of exopolysaccharides that improve food safety and consumer sensory experience.
View Article and Find Full Text PDFDifferent types of milk are used in the production of milk kefir, but little information is available on the release of potentially antioxidant exopolysaccharides (EPS). The aim of this study was to investigate whether the microbial dynamics and EPS release are dependent on the milk substrate. In our study, the inoculated microbial consortium was driven differently by each type of milk (cow, ewe, and goat).
View Article and Find Full Text PDFThe use of dyes in textile industries has resulted in substantially contaminated soil, water and ecosystem including fauna and flora. So, the application of eco-friendly approach for dyes removal is in great demand. The goal of this research was to develop and test a bacterial consortium for biodegrading dyes in artificial textile effluent (ATE) derived from mixture of Indigo carmine (40 mg/l); Malachite green (20 mg/l); Cotton bleu (40 mg/l); Bromocresol green (20 mg/l) and CI Reactive Red 66 (40 mg/l) dissolved in artificial seawater.
View Article and Find Full Text PDFIn this study, Box-Behnken design combining seven factors at three levels were used to optimize the elimination of CI Reactive Red 66 in artificial seawater, by the combination of eco-friendly bio-sorbents and acclimated halotolerant microbial strain. Results showed that macro-algae and cuttlebone (2 %) were the best natural bio-sorbent. Additionally, the selected halotolerant strain able to rapidly remove dye was identified as Shewanella algae B29.
View Article and Find Full Text PDFBacterial species for metabolizing dye molecules were isolated from textile wastewater. The best microbial species for such an application was selected amongst the isolated bacterial populations by conducting methylene blue (MB) batch degradation studies with the bacterial strains. The most suitable bacterial species was Staphylococcus aureus (S.
View Article and Find Full Text PDFThis study investigated the fortification of a carob-based kefir-like beverage (KLB) with whey permeate (WP) and oat flour (OF). The response surface method was used to show the effect of WP and OF concentrations on lactic acid bacteria and yeast cell densities, pH, total titratable acidity (TTA), total phenolics content (TCP), DPPH radical scavenging activity, and overall acceptability (OA) in KLB. The statistical design provided thirteen formulations where OF concentration varied from 3% to 5% and WP from 10% to 15%.
View Article and Find Full Text PDFThe textile dyeing and printing industries has led to extensive environmental pollution and severely threatens ecosystems. The best microbial species for such application was selected among the isolated bacterial populations by conducting CI Reactive Blue 40 (CI RB 40) batch degradation studies with the bacterial-algal-probiotic strains. In this study, three suitable species (Pseudomonas putida, Chlorella and Lactobacillus plantarum) were applied to degrade and detoxify CI RB 40, a reactive diazo dye in Real Textile Wastewater, used in textile dyeing industry worldwide.
View Article and Find Full Text PDFJ Microbiol Biotechnol
October 2019
Azo dyes are recalcitrant pollutants, which are toxic, carcinogenic, mutagenic and teratogenic, that constitute a significant burden to the environment. The decolorization and the mineralization efficiency of Remazol Brillant Orange 3R (RBO 3R) was studied using a probiotic consortium ( and ). Biodegradation of RBO 3R (750 ppm) was investigated under shaking condition in Mineral Salt Medium (MSM) solution at pH 11.
View Article and Find Full Text PDFCongo red is one of the best known and used azo dyes which has two azo bonds (-N=N-) chromophore in its molecular structure. Its structural stability makes it highly toxic and resistant to biodegradation. The objective of this study was to assess the congo red biodegradation and detoxification by .
View Article and Find Full Text PDFTable olive processing wastewaters constitute a dangerous environmental problem in the Mediterranean countries because of their large volumes, high organic matter and salt concentration. The quantity and the characteristics of wastewaters produced, and thus, their environmental impact, varied depending on the season, varieties, soil and process employed. Several chemicals, biological and combined technologies have proven effective at bringing down organic pollution and toxicity of these effluents.
View Article and Find Full Text PDFStaphylococcus aureus, showing the greatest decolorization ability, was further investigated for Methyl Red (MR) Congo Red (CR), Crystal Violet (CV) and Malachite Green (MG) decolorization using response surface methodology (RSM). The chemometric methods use, based on statistical design of experiments (DOEs) such as RSM is becoming increasingly widespread in several sciences such as analytical chemistry, engineering and environmental chemistry. Stapphylococcus aureus ATCC 25923, Stapphylococcus aureus (S1) and Stapphylococcus aureus (S2), were isolated from textile wastewater plant located in KsarHellal, Tunisia and were tested for their decolorization capacity.
View Article and Find Full Text PDFBull Environ Contam Toxicol
June 2015
Treated wastewater (TWW) and freshwater used separately or within the same agricultural soil is a key element in soil parameter evolution, soil-plant pollution and crop yields. The long-term application of TWW increased CaCO3, P, N, K, TOC, metal contents, pH and salinity in isohumic soil in semi-arid and arid climates. Also, it was found that using freshwater after TWW within the same land leached soil compounds and pollutants.
View Article and Find Full Text PDFWith the aid of analysis software (Minitab 14.0), the formulation of pure culture in Mineral Salts Medium (MSM) can be optimized for several responses and the best formulation can be obtained. The influence of the different mixtures of three strains in the pure culture in MSM on the flavor components in decolorization of Methyl Red (with initial total cell density fixed at OD600 = 1 and in addition of 750 ppm of dye) was studied using equilateral triangle diagram and mixture experimental design to assess color and COD removal during species evolution.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2010
Geotrichum candidum is a yeast-like filamentous fungus that has attracted industrial interest. The present work investigated G. candidum biomass production in agro-industrial wastewaters (olive mill wastewater (OMW) and cheese whey (CW)) as the only substrate.
View Article and Find Full Text PDFOlive-mill wastes represent a significant environmental problem in Mediterranean areas due to their significant production during a short period of time. Their high polyphenol, lipid and organic acid concentrations make them phytotoxic wastes. Composting is one of the technologies used for the valorization of those wastes, producing a fertilizer useful for poor soils.
View Article and Find Full Text PDFThe decolourizing ability of Aspergillus alliaceus 121C was investigated on solid medium. The effects of nitrogen (N), carbon (C) sources and supplements on the decolourization of Indigo and Congo red dyes were studied. It has been shown that both the nature and the quantity of available N- and C-sources exert an influence on growth and decolourization.
View Article and Find Full Text PDF