Artificial intelligence (AI) offers great promise in cardiology, and medicine broadly, for its ability to tirelessly integrate vast amounts of data. Applications in medical imaging are particularly attractive, as images are a powerful means to convey rich information and are extensively utilized in cardiology practice. Departing from other AI approaches in cardiology focused on task automation and pattern recognition, we describe a digital health platform to synthesize enhanced, yet familiar, clinical images to augment the cardiologist's visual clinical workflow.
View Article and Find Full Text PDFIntravascular ultrasound (IVUS) imaging is widely used for diagnostic imaging in interventional cardiology. The detection and quantification of atherosclerosis from acquired images is typically performed manually by medical experts or by virtual histology IVUS (VH-IVUS) software. VH-IVUS analyzes backscattered radio frequency (RF) signals to provide a color-coded tissue map, and is the method of choice for assessing atherosclerotic plaque .
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Near infrared autofluorescence (NIRAF) optical coherence tomography (OCT) is an intravascular imaging modality, based on a catheter which emits light at two different wavelengths through an optical fiber. Since OCT is becoming the method of choice in interventional cardiology and NIRAF is proven to be higher in plaque lesions having higher risk morphologic phenotypes, the NIRAF-OCT can become powerful and promising technology. However, there is NIRAF- distance dependence which has to be addressed before the technology can be applied in clinical practice.
View Article and Find Full Text PDFThe detection, quantification and characterization of coronary atherosclerotic plaques has a major effect on the diagnosis and treatment of coronary artery disease (CAD). Different studies have reported and evaluated the noninvasive ability of Computed Tomography Coronary Angiography (CTCA) to identify coronary plaque features. The identification of calcified plaques (CP) and non-calcified plaques (NCP) using CTCA has been extensively studied in cardiovascular research.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2019
Aortic dissections are challenging for it remains perplexing to determine when surgical, endovascular, or medical therapies are optimal. We studied the effect of the multilayer flow modulator (MFM) device in patients with different forms of type-B aortic dissections. CT scans were performed pre-, immediately post-MFM implantation, and multiple times within a 24-month follow-up.
View Article and Find Full Text PDFAutomated analysis of vascular imaging techniques is limited by the inability to precisely determine arterial borders. Intravascular optical coherence tomography (OCT) offers unprecedented detail of artery wall structure and composition, but does not provide consistent visibility of the outer border of the vessel due to the limited penetration depth. Existing interpolation and surface fitting methods prove insufficient to accurately fill the gaps between the irregularly spaced and sometimes unreliably identified visible segments of the vessel outer border.
View Article and Find Full Text PDFComputational cardiology is the scientific field devoted to the development of methodologies that enhance our mechanistic understanding, diagnosis and treatment of cardiovascular disease. In this regard, the field embraces the extraordinary pace of discovery in imaging, computational modeling, and cardiovascular informatics at the intersection of atherogenesis and vascular biology. This paper highlights existing methods, practices, and computational models and proposes new strategies to support a multidisciplinary effort in this space.
View Article and Find Full Text PDFBioresorbable vascular scaffolds (BVS), the next step in the continuum of minimally invasive vascular interventions present new opportunities for patients and clinicians but challenges as well. As they are comprised of polymeric materials standard imaging is challenging. This is especially problematic as modalities like optical coherence tomography (OCT) become more prevalent in cardiology.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2018
Management of aortic dissections (AD) is still challenging, with no universally approved guideline among possible surgical, endovascular, or medical therapies. Approximately 25% of patients with AD suffer postintervention malperfusion syndrome or hemodynamic instability, with the risk of sudden death if left untreated. Part of the issue is that vascular implants may themselves induce flow disturbances that critically impact vital organs.
View Article and Find Full Text PDFWe present a novel and time-efficient method for intracoronary lumen detection, which produces three-dimensional (3-D) coronary arteries using optical coherence tomographic (OCT) images. OCT images are acquired for multiple patients and longitudinal cross-section (LOCS) images are reconstructed using different acquisition angles. The lumen contours for each LOCS image are extracted and translated to 2-D cross-sectional images.
View Article and Find Full Text PDFPolymeric endovascular implants are the next step in minimally invasive vascular interventions. As an alternative to traditional metallic drug-eluting stents, these often-erodible scaffolds present opportunities and challenges for patients and clinicians. Theoretically, as they resorb and are absorbed over time, they obviate the long-term complications of permanent implants, but in the short-term visualization and therefore positioning is problematic.
View Article and Find Full Text PDFBackground: Due to the incremental increase of clinical interest in the development of software that allows the 3-dimensional (3D) reconstruction and the functional assessment of the coronary vasculature, several software packages have been developed and are available today.
Objective: Taking this into consideration, we have developed an innovative suite of software modules that perform 3D reconstruction of coronary arterial segments using different coronary imaging modalities such as IntraVascular UltraSound (IVUS) and invasive coronary angiography images (ICA), Optical Coherence Tomography (OCT) and ICA images, or plain ICA images and can safely and accurately assess the hemodynamic status of the artery of interest.
Methods: The user can perform automated or manual segmentation of the IVUS or OCT images, visualize in 3D the reconstructed vessel and export it to formats, which are compatible with other Computer Aided Design (CAD) software systems.
Annu Int Conf IEEE Eng Med Biol Soc
July 2017
The aim of this study is to present a new method for three-dimensional (3D) reconstruction of coronary bifurcations using biplane Coronary Angiographies and Optical Coherence Tomography (OCT) imaging. The method is based on a five step approach by improving a previous validated work in order to reconstruct coronary arterial bifurcations. In the first step the lumen borders are detected on the Frequency Domain (FD) OCT images.
View Article and Find Full Text PDFObjective: The aim of this study is to explore major mechanisms of atherosclerotic plaque growth, presenting a proof-of-concept numerical model.
Methods: To this aim, a human reconstructed left circumflex coronary artery is utilized for a multilevel modeling approach. More specifically, the first level consists of the modeling of blood flow and endothelial shear stress (ESS) computation.
Carotid atherosclerosis may lead to devastating clinical outcomes such as stroke. Data on the value of local factors in predicting progression in carotid atherosclerosis are limited. Our aim was to investigate the association of local endothelial shear stress (ESS) and low-density lipoprotein (LDL) accumulation with the natural history of atherosclerotic disease using a series of 3 time points of human magnetic resonance data.
View Article and Find Full Text PDFBackground: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA).
Methods: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel's centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction.
Results: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method.
In this work, we present a computational model for plaque growth utilizing magnetic resonance data of a patient's carotid artery. More specifically, we model blood flow utilizing the Navier-Stokes equations, as well as LDL and HDL transport using the convection-diffusion equation in the arterial lumen. The accumulated LDL in the arterial wall is oxidized considering the protective effect of HDL.
View Article and Find Full Text PDFThe aim of this study is to present a new method for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography (CT) Angiography. The method is summarized in three steps. In the first step, image filters are applied to CT images and an initial estimation of the vessel borders is extracted.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
The estimation of the severity of coronary lesions is of utmost importance in today's clinical practice, since Cardiovascular diseases often have fatal consequences. The most efficient method to estimate the severity of a lesion is the calculation of the Fractional Flow Reserve. The necessary use of a pressure wire, however, makes this method invasive and strenuous for the patient.
View Article and Find Full Text PDFBackground: Micro-CT is an established imaging technique for high-resolution non-destructive assessment of vascular samples, which is gaining growing interest for investigations of atherosclerotic arteries both in humans and in animal models. However, there is still a lack in the definition of micro-CT image metrics suitable for comprehensive evaluation and quantification of features of interest in the field of experimental atherosclerosis (ATS).
Objective: A novel approach to micro-CT image processing for profiling of coronary ATS is described, providing comprehensive visualization and quantification of contrast agent-free 3D high-resolution reconstruction of full-length artery walls.
Comput Methods Programs Biomed
October 2015
Imaging systems transmit and acquire signals and are subject to errors including: error sources, signal variations or possible calibration errors. These errors are included in all imaging systems for atherosclerosis and are propagated to methodologies implemented for the segmentation and characterization of atherosclerotic plaque. In this paper, we present a study for the propagation of imaging errors and image segmentation errors in plaque characterization methods applied to 2D vascular images.
View Article and Find Full Text PDFPressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer vessel wall) from six patients were reconstructed in three-dimensional (3D) space using intravascular ultrasound and biplane angiographic images.
View Article and Find Full Text PDFCoronary artery disease is the primary cause of morbidity and mortality worldwide. Therefore, detailed assessment of lesions in the coronary vasculature is critical in current clinical practice. Fractional flow reserve (FFR) has been proven as an efficient method for assessing the hemodynamic severity of a coronary stenosis.
View Article and Find Full Text PDF