Publications by authors named "Lambertus Dorland"

Background: The recent discovery and specific functions of D-amino acids in humans are bound to lead to the revelation of D-amino acid abnormalities in human disorders. Therefore, high-throughput analysis techniques are warranted to determine D-amino acids in biological fluids in a routine laboratory setting.

Methods: We developed 2 chromatographic techniques, a nonchiral derivatization with chiral (chirasil-L-val column) separation in a GC-MS system and a chiral derivatization with Marfey's reagent and LC- MS analysis.

View Article and Find Full Text PDF

N-Methyl D-aspartate (NMDA)-receptor hypofunction has been implicated in the pathophysiology of schizophrenia and D-serine and glycine add-on therapy to antipsychotics has shown beneficial effects in schizophrenic patients. Nevertheless, previous studies have not shown consistently altered D-serine concentrations in cerebrospinal fluid (CSF) of schizophrenic patients. To confirm and extend these results, CSF concentrations of both endogenous NMDA-receptor co-agonists d-serine and glycine and their common precursor L-serine were analyzed simultaneously in 17 healthy controls and 19 schizophrenic patients before and 6 weeks after daily olanzapine (10 mg) treatment.

View Article and Find Full Text PDF

To elucidate the role of D-serine in human central nervous system, we analyzed D-serine, L-serine, and glycine concentrations in cerebrospinal fluid of healthy children and children with a defective L-serine biosynthesis (3-phosphoglycerate dehydrogenase deficiency). Healthy children showed high D-serine concentrations immediately after birth, both absolutely and relative to glycine and L-serine, declining to low values at infancy. D-Serine concentrations were almost undetectable in untreated 3-phosphoglycerate dehydrogenase-deficient patients.

View Article and Find Full Text PDF

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive malformation syndrome characterized by mental retardation, congenital anomalies, and growth deficiency. The syndrome is caused by a block in cholesterol biosynthesis at the level of 7-dehydrocholesterol reductase (7-DHCR), which results in elevated levels of the cholesterol precursor 7-dehydrocholesterol (7-DHC) and its isomer 8-dehydrocholesterol (8-DHC). We report on three patients from two families with a very mild clinical presentation of SLOS.

View Article and Find Full Text PDF