Individuals in isolated and extreme environments can experience debilitating side-effects including significant decreases in fat-free mass (FFM) from disuse and inadequate nutrition. The objective of this study was to determine the strengths and weaknesses of three-dimensional optical (3DO) imaging for monitoring body composition in either simulated or actual remote environments. Thirty healthy adults (ASTRO, male = 15) and twenty-two Antarctic Expeditioners (ABCS, male = 18) were assessed for body composition.
View Article and Find Full Text PDFBackground: Body shape, an intuitive health indicator, is deterministically driven by body composition. We developed and validated a deep learning model that generates accurate dual-energy X-ray absorptiometry (DXA) scans from three-dimensional optical body scans (3DO), enabling compositional analysis of the whole body and specified subregions. Previous works on generative medical imaging models lack quantitative validation and only report quality metrics.
View Article and Find Full Text PDFBackground: The obesity epidemic brought a need for accessible methods to monitor body composition, as excess adiposity has been associated with cardiovascular disease, metabolic disorders, and some cancers. Recent 3-dimensional optical (3DO) imaging advancements have provided opportunities for assessing body composition. However, the accuracy and precision of an overall 3DO body composition model in specific subgroups are unknown.
View Article and Find Full Text PDFBackground: Recent 3-dimensional optical (3DO) imaging advancements have provided more accessible, affordable, and self-operating opportunities for assessing body composition. 3DO is accurate and precise in clinical measures made by DXA. However, the sensitivity for monitoring body composition change over time with 3DO body shape imaging is unknown.
View Article and Find Full Text PDFBackground: Mortality research has identified biomarkers predictive of all-cause mortality risk. Most of these markers, such as body mass index, are predictive cross-sectionally, while for others the longitudinal change has been shown to be predictive, for instance greater-than-average muscle and weight loss in older adults. And while sometimes markers are derived from imaging modalities such as DXA, full scans are rarely used.
View Article and Find Full Text PDFBackground: While breast imaging such as full-field digital mammography and digital breast tomosynthesis have helped to reduced breast cancer mortality, issues with low specificity exist resulting in unnecessary biopsies. The fundamental information used in diagnostic decisions are primarily based in lesion morphology. We explore a dual-energy compositional breast imaging technique known as three-compartment breast (3CB) to show how the addition of compositional information improves malignancy detection.
View Article and Find Full Text PDFBackground The ability of deep learning (DL) models to classify women as at risk for either screening mammography-detected or interval cancer (not detected at mammography) has not yet been explored in the literature. Purpose To examine the ability of DL models to estimate the risk of interval and screening-detected breast cancers with and without clinical risk factors. Materials and Methods This study was performed on 25 096 digital screening mammograms obtained from January 2006 to December 2013.
View Article and Find Full Text PDF