Publications by authors named "Lambert Brau"

In this study, inexpensive earth-abundant catalyst of Co/TiO is coupled with a low-temperature modification approach to enhance NH adsorption capacity on wheat straw (WS). The highest NH uptake achieved is 111.9 mg/g, with 80.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) and beneficial bacteria are found naturally associated with most terrestrial plant roots. While it is now well known that bacteria colonize AMF and can form aggregates and biofilms, little is known about how interactions between bacterial communities and AMF take place under both in situ and in vitro conditions. We investigated the impact of inoculation with AMF-associated bacteria (AABs) of AMF by in vitro recreation of the interaction on synthetic growth media in a two-compartment Petri plate system.

View Article and Find Full Text PDF

A growing concern on the deleterious effects of chemical inputs to the environment has been on the rise from the excessive use of chemical inputs leading to soil and water pollution, destruction to fauna and microbial communities, reduced soil fertility and increased crop disease susceptibility. In the Great Mekong Region (GMR), a large majority of the population relies on agriculture and faces severe challenges including decline in soil fertility, increased pests and diseases, leading to lower ecosystem productivity. In this region, over-dependence on chemical fertilizers also continues to impact negatively on soil health and the wider ecosystem.

View Article and Find Full Text PDF

The genus Micromonospora has been found in nodules of several legumes and some new species of this genus were isolated from these plant organs. In this study we analysed the taxonomic diversity of Micromonospora strains isolated from alfalfa nodules in Spain and Australia on the basis of three phylogenetic markers, the rrs and gyrB genes and 16S-23S intergenic spacer (ITS). The genome analysis of selected strains representative of different clusters or lineages found after rrs, gyrB and ITS analyses confirmed the results obtained with these phylogenetic markers.

View Article and Find Full Text PDF

Biochar is a potential tool to mitigate climate change by enhancing C sequestration in soils, but its use as a soil amendment to improve soil fertility and crop yields is still a contentious subject. In North East (NE) Thailand, biochar has been promoted to restore soil fertility in rubber tree plantations. Despite this, there is scarce information on the impact of biochar application on the soil biota, particularly on microbial communities associated with rubber trees.

View Article and Find Full Text PDF

Plant growth-promoting bacteria (PGPB) inhabit the rhizosphere of plants and are capable of enhancing plant growth through a number of mechanisms. A strain of Pseudomonas fluorescens DUS1-27 was identified as a potential PGPB candidate based on its ability to increase the growth of Brassica napus L. (canola) over that of uninoculated control plants in a soil-based system.

View Article and Find Full Text PDF

This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn.

View Article and Find Full Text PDF

Rubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations.

View Article and Find Full Text PDF

Ensifer meliloti strain RRI128 is an aerobic, motile, Gram-negative, non-spore-forming rod. RRI128 was isolated from a nodule recovered from the roots of barrel medic (Medicago truncatula) grown in the greenhouse and inoculated with soil collected from Victoria, Australia. The strain is used in commercial inoculants in Australia.

View Article and Find Full Text PDF

Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G.

View Article and Find Full Text PDF

Burkholderia sp. strain WSM2230 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod isolated from acidic soil collected in 2001 from Karijini National Park, Western Australia, using Kennedia coccinea (Coral Vine) as a host. WSM2230 was initially effective in nitrogen-fixation with K.

View Article and Find Full Text PDF

Ensifer medicae strain WSM1115 forms effective nitrogen fixing symbioses with a range of annual Medicago species and is used in commercial inoculants in Australia. WSM1115 is an aerobic, motile, Gram-negative, non-spore-forming rod. It was isolated from a nodule recovered from the root of burr medic (Medicago polymorpha) collected on the Greek Island of Samothraki.

View Article and Find Full Text PDF

Burkholderia mimosarum strain LMG 23256(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Mimosa pigra (giant sensitive plant). LMG 23256(T) was isolated from a nodule recovered from the roots of the M. pigra growing in Anso, Taiwan.

View Article and Find Full Text PDF

Ensifer arboris LMG 14919(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of several species of legume trees. LMG 14919(T) was isolated in 1987 from a nodule recovered from the roots of the tree Prosopis chilensis growing in Kosti, Sudan. LMG 14919(T) is highly effective at fixing nitrogen with P.

View Article and Find Full Text PDF

Ensifer medicae WSM1369 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1369 was isolated in 1993 from a nodule recovered from the roots of Medicago sphaerocarpos growing at San Pietro di Rudas, near Aggius in Sardinia (Italy). WSM1369 is an effective microsymbiont of the annual forage legumes M.

View Article and Find Full Text PDF

Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M.

View Article and Find Full Text PDF

Ensifer sp. TW10 is a novel N2-fixing bacterium isolated from a root nodule of the perennial legume Tephrosia wallichii Graham (known locally as Biyani) found in the Great Indian (or Thar) desert, a large arid region in the northwestern part of the Indian subcontinent. Strain TW10 is a Gram-negative, rod shaped, aerobic, motile, non-spore forming, species of root nodule bacteria (RNB) that promiscuously nodulates legumes in Thar Desert alkaline soil.

View Article and Find Full Text PDF

Rhizobium leguminosarum bv. trifolii SRDI943 (strain syn. V2-2) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a root nodule of Trifolium michelianum Savi cv.

View Article and Find Full Text PDF

Rhizobium leguminosarum bv. trifolii SRDI565 (syn. N8-J) is an aerobic, motile, Gram-negative, non-spore-forming rod.

View Article and Find Full Text PDF

Mesorhizobium loti strain NZP2037 was isolated in 1961 in Palmerston North, New Zealand from a Lotus divaricatus root nodule. Compared to most other M. loti strains, it has a broad host range and is one of very few M.

View Article and Find Full Text PDF

Mesorhizobium loti strain R7A was isolated in 1993 in Lammermoor, Otago, New Zealand from a Lotus corniculatus root nodule and is a reisolate of the inoculant strain ICMP3153 (NZP2238) used at the site. R7A is an aerobic, Gram-negative, non-spore-forming rod. The symbiotic genes in the strain are carried on a 502-kb integrative and conjugative element known as the symbiosis island or ICEMlSym(R7A).

View Article and Find Full Text PDF

Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa.

View Article and Find Full Text PDF

Ensifer medicae Di28 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago spp. Di28 was isolated in 1998 from a nodule recovered from the roots of M. polymorpha growing in the south east of Sardinia (Italy).

View Article and Find Full Text PDF

Mesorhizobium loti strain R88B was isolated in 1993 in the Rocklands range in Otago, New Zealand from a Lotus corniculatus root nodule. R88B is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M.

View Article and Find Full Text PDF

Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is produced commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance.

View Article and Find Full Text PDF