Norepinephrine (NE) is a potent anti-inflammatory agent in the brain. In Alzheimer's disease (AD), the loss of NE signaling heightens neuroinflammation and exacerbates amyloid pathology. NE inhibits surveillance activity of microglia, the brain's resident immune cells, via their β2 adrenergic receptors (β2ARs).
View Article and Find Full Text PDFIn Alzheimer's disease (AD) pathophysiology, plaque and tangle accumulation trigger an inflammatory response that mounts positive feed-back loops between inflammation and protein aggregation, aggravating neurite damage and neuronal death. One of the earliest brain regions to undergo neurodegeneration is the locus coeruleus (LC), the predominant site of norepinephrine (NE) production in the central nervous system (CNS). In animal models of AD, dampening the impact of noradrenergic signaling pathways, either through administration of beta blockers or pharmacological ablation of the LC, heightened neuroinflammation through increased levels of pro-inflammatory mediators.
View Article and Find Full Text PDFRecent studies have shown that the aryl hydrocarbon receptor (AhR) is expressed in the brain's native immune cells, known as microglia. However, while the impact of exposure to AhR ligands is well studied in the peripheral immune system, the impact of such exposure on immune function in the brain is less well defined. Microglia serve dual roles in providing synaptic and immunological support for neighboring neurons and in mediating responses to environmental stimuli, including exposure to environmental chemicals.
View Article and Find Full Text PDFMicroglia are the brain's resident immune cells with a tremendous capacity to autonomously self-renew. Because microglial self-renewal has largely been studied using static tools, its mechanisms and kinetics are not well understood. Using chronic in vivo two-photon imaging in awake mice, we confirm that cortical microglia show limited turnover and migration under basal conditions.
View Article and Find Full Text PDFFetal alcohol spectrum disorder patients suffer from many cognitive disabilities. These include impaired auditory, visual, and tactile sensory information processing, making it more difficult for these patients to learn to navigate social scenarios. Rodent studies have shown that alcohol exposure during the brain growth spurt (BGS) can lead to acute neuronal apoptosis and an immunological response by microglia in the somatosensory cortex.
View Article and Find Full Text PDFWhile microglia have been established as critical mediators of synaptic plasticity, the molecular signals underlying this process are still being uncovered. Increasing evidence suggests that microglia utilize these signals in a temporally and regionally heterogeneous manner. Subsequently, it is necessary to understand the conditions under which different molecular signals are employed by microglia to mediate the physiological process of synaptic remodeling in development and adulthood.
View Article and Find Full Text PDFFetal alcohol spectrum disorders (FASD) are the most common cause of nonheritable, preventable mental disability and are characterized by cognitive, behavioral, and physical impairments. FASD occurs in almost 5% of births in the United States, but despite this prevalence there is no known cure, largely because the biological mechanisms that translate alcohol exposure to neuropathology are not well understood. While the effects of early ethanol exposure on neuronal survival and circuitry have received more attention, glia, the cells most closely tied to initiating and propagating inflammatory events, could be an important target for alcohol in the developing brain.
View Article and Find Full Text PDFMicroglia, the immune cells of the brain, have a canonical role in regulating responses to neurological disease or injury, but have also recently been implicated as regulators of neurophysiological processes such as learning and memory. Given these dual immune and physiological roles, microglia are a likely mechanism by which external toxic stimuli are converted into deficits in neuronal circuitry and subsequently function. However, while it is well established that exposure to environmental toxicants negatively affects the peripheral immune system, it remains unknown whether and how such exposure causes neuroinflammation which, in turn, may negatively impact microglial functions in vivo.
View Article and Find Full Text PDFMuch innovation is currently aimed at improving the number, density, and geometry of electrodes on extracellular multielectrode arrays for in vivo recording of neural activity in the mammalian brain. To choose a multielectrode array configuration for a given neuroscience purpose, or to reveal design principles of future multielectrode arrays, it would be useful to have a systematic way of evaluating the spike recording capability of such arrays. We describe an automated system that performs robotic patch-clamp recording of a neuron being simultaneously recorded via an extracellular multielectrode array.
View Article and Find Full Text PDFMicroglia are the innate immune cells of the central nervous system and are also important participants in normal development and synaptic plasticity. Here, we demonstrate that the microglia of the mouse cerebellum represent a unique population compared to cortical microglia. Microglia are more sparsely distributed within the cerebellum and have a markedly less ramified morphology compared to their cortical counterparts.
View Article and Find Full Text PDFFetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions.
View Article and Find Full Text PDFMicroglia are the resident immune cells of the brain. Increasingly, they are recognized as important mediators of normal neurophysiology, particularly during early development. Here we demonstrate that microglia are critical for ocular dominance plasticity.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex.
View Article and Find Full Text PDFAstrocytes are highly ramified glial cells with critical roles in brain physiology and pathology. Recently, breakthroughs in imaging technology have expanded our understanding of astrocyte function in vivo. The in vivo study of astrocytic dynamics, however, is limited by the tools available to label astrocytes and their processes.
View Article and Find Full Text PDFChronic in vivo imaging studies of the brain require a labeling method that is fast, long-lasting, efficient, nontoxic, and cell-type specific. Over the last decade, adeno-associated virus (AAV) has been used to stably express fluorescent proteins in neurons in vivo. However, AAV's main limitation for many studies (such as those of neuronal development) is the necessity of second-strand DNA synthesis, which delays peak transgene expression.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
June 2002
The death of a control subject after an oral load of methionine for a study of the possible relationship between homocysteine and Alzheimer's disease is reported. The subject developed postload plasma concentrations of methionine far beyond those reported previously in humans given the usual oral loading dose of methionine (100 mg/kg body wt). Her preload plasma metabolite values rule out known genetic diseases that might predispose one to unusually high methionine concentrations.
View Article and Find Full Text PDFMouse embryos homozygous for the allele eed(l7Rn5-3354SB) of the Polycomb Group gene embryonic ectoderm development (eed) display a gastrulation defect in which epiblast cells move through the streak and form extraembryonic mesoderm derivatives at the expense of development of the embryo proper. Here we demonstrate that homozygous mutant ES cells have the capacity to differentiate embryonic cell types both in vitro as embryoid bodies and in vivo as chimeric embryos. In chimeric embryos, eed mutant cells can respond to wild-type signals and participate in normal gastrulation movements.
View Article and Find Full Text PDFLumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification.
View Article and Find Full Text PDFDeletion complexes consisting of multiple chromosomal deletions induced at single loci can provide a means for functional analysis of regions spanning several centimorgans in model genetic systems. A strategy to identify and map deletions at any cloned locus in the mouse is described here. First, a highly polymorphic, germ-line competent F1(129/Sv-+Tyr+p x CAST/Ei) mouse embryonic stem cell line was established.
View Article and Find Full Text PDFGene targeting was used to create a null allele at the epidermal growth factor receptor locus (Egfr). The phenotype was dependent on genetic background. EGFR deficiency on a CF-1 background resulted in peri-implantation death due to degeneration of the inner cell mass.
View Article and Find Full Text PDFJ Am Assoc Nephrol Nurses Tech
February 1981