We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping.
View Article and Find Full Text PDFThe interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies.
View Article and Find Full Text PDFThe magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra.
View Article and Find Full Text PDFThe insulator-to-metal transition continues to be a challenging subject, especially when electronic correlations are strong. In layered compounds, such as La2-xSrxNiO4 and La2-xBaxCuO4, the doped charge carriers can segregate into periodically spaced charge stripes separating narrow domains of antiferromagnetic order. Although there have been theoretical proposals of dynamically fluctuating stripes, direct spectroscopic evidence of charge-stripe fluctuations has been lacking.
View Article and Find Full Text PDFAn hour-glass-shaped magnetic excitation spectrum appears to be a universal characteristic of the high-temperature superconducting cuprates. Fluctuating charge stripes or alternative band structure approaches are able to explain the origin of these spectra. Recently, an hour-glass spectrum has been observed in an insulating cobaltate, thus favouring the charge stripe scenario.
View Article and Find Full Text PDFThe incommensurate stripelike magnetic ordering in two single-layered manganites, Nd0.33Sr1.67MnO4 and Pr0.
View Article and Find Full Text PDFMagnetic correlations in superconducting LiFeAs were studied by elastic and by inelastic neutron-scattering experiments. There is no indication for static magnetic ordering, but inelastic correlations appear at the incommensurate wave vector (0.5±δ,0.
View Article and Find Full Text PDFMotivated by predictions of a substantial contribution of the "buckling" vibration of the CuO(2) layers to d-wave superconductivity in the cuprates, we have performed an inelastic neutron scattering study of this phonon in an array of untwinned crystals of YBa(2)Cu(3)O(7). The data reveal a pronounced softening of the phonon at the in-plane wave vector q=(0,0.3) upon cooling below ~105 K, but no corresponding anomaly at q=(0.
View Article and Find Full Text PDFChiral nematic liquid crystals sometimes form blue phases characterized by spirals twisting in different directions. By combining model calculations with neutron-scattering experiments, we show that the magnetic analogue of blue phases does form in the chiral itinerant magnet MnSi in a large part of the phase diagram. The properties of this blue phase explain a number of previously reported puzzling features of MnSi such as partial magnetic order and a two-component specific-heat and thermal-expansion anomaly at the magnetic transition.
View Article and Find Full Text PDFWe measured phonon dispersions of CaFe2As2 using inelastic neutron scattering and compared our results to predictions of density functional theory in the local density approximation. The calculation gives correct frequencies of most phonons if the experimental crystal structure is used, except observed linewidths/frequencies of certain modes were larger/softer than predicted. Strong temperature dependence of some phonons near the structural phase transition near 172 K may indicate strong electron-phonon coupling and/or anharmonicity, which may be important for superconductivity.
View Article and Find Full Text PDFSpin wave measurements have been carried out in ferromagnetic (F) La(1-x)(Sr,Ca)(x)MnO(3) with x(Sr) = 0.15, 0.175, 0.
View Article and Find Full Text PDF