Publications by authors named "Lama Khalil"

In two dimensional materials, substitutional doping during growth can be used to alter the electronic properties. Here, we report on the stable growth of p-type hexagonal boron nitride (h-BN) using Mg-atoms as substitutional impurities in the h-BN honeycomb lattice. We use micro-Raman spectroscopy, angle-resolved photoemission measurements (nano-ARPES) and Kelvin probe force microscopy (KPFM) to study the electronic properties of Mg-doped h-BN grown by solidification from a ternary Mg-B-N system.

View Article and Find Full Text PDF

Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WSSealloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of the-space by a constant in-plane vector.

View Article and Find Full Text PDF

Nearly localized moiré flat bands in momentum space, arising at particular twist angles, are the key to achieve correlated effects in transition-metal dichalcogenides. Here, we use angle-resolved photoemission spectroscopy (ARPES) to visualize the presence of a flat band near the Fermi level of van der Waals WSe/MoSeheterobilayer grown by molecular beam epitaxy. This flat band is localized near the Fermi level and has a width of several hundred meVs.

View Article and Find Full Text PDF

The strain in hybrid van der Waals heterostructures, made of two distinct two-dimensional van der Waals materials, offers an interesting handle on their corresponding electronic band structure. Such strain can be engineered by changing the relative crystallographic orientation between the constitutive monolayers, notably, the angular misorientation, also known as the "twist angle". By combining angle-resolved photoemission spectroscopy with density functional theory calculations, we investigate here the band structure of the WS/graphene heterobilayer for various twist angles.

View Article and Find Full Text PDF

Dirac fermions play a central role in the study of topological phases, for they can generate a variety of exotic states, such as Weyl semimetals and topological insulators. The control and manipulation of Dirac fermions constitute a fundamental step toward the realization of novel concepts of electronic devices and quantum computation. By means of Angle-Resolved Photo-Emission Spectroscopy (ARPES) experiments and ab initio simulations, here, we show that Dirac states can be effectively tuned by doping a transition metal sulfide, [Formula: see text], through Co/Ni substitution.

View Article and Find Full Text PDF

Semiconducting monolayers of a 2D material are able to concatenate multiple interesting properties into a single component. Here, by combining opto-mechanical and electronic measurements, we demonstrate the presence of a partial 2H-1T' phase transition in a suspended 2D monolayer membrane of MoS. Electronic transport shows unexpected memristive properties in the MoS membrane, in the absence of any external dopants.

View Article and Find Full Text PDF

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface.

View Article and Find Full Text PDF