Coherent beam combination is one promising way to overcome the power limit of one single laser. In this paper, we use a Multi-Plane Light Converter to combine coherently 12 fibers at 1.03 µm with a phase locking setup.
View Article and Find Full Text PDFThe mid-infrared spectral region opens up new possibilities for applications such as molecular spectroscopy with high spatial and frequency resolution. For example, the mid-infrared light provided by synchrotron sources has helped for early diagnosis of several pathologies. However, alternative light sources at the table-top scale would enable better access to these state-of-the-art characterizations, eventually speeding up research in biology and medicine.
View Article and Find Full Text PDFHighly efficient coherent beam combining (CBC) of two very-high-power optical amplifiers (VHPOA) with applications to long-range FSO communications such as ground-to-space feeder links is presented. The CBC setup is designed to minimize the telecom signal degradation, with a polarization beam splitter used to minimize the power fluctuations and to control the output polarization state of the beam. The system delivers 80 W output power and is proven to be compatible with 25 Gb/s telecom signals with a less than 1 dB power penalty.
View Article and Find Full Text PDFWe report on mid-infrared optical parametric generation in the 4-5 μm and 9-12 μm bands by pumping custom-designed orientation-patterned gallium arsenide (OP-GaAs) rib waveguides with an ultrafast femtosecond fiber laser system. This pump source is seeded by a mode-locked fluoride fiber laser with 59 MHz repetition rate and can be tuned between 2.8 and 3.
View Article and Find Full Text PDFWe report on the use of a 61 beamlets coherent beam combination femtosecond fiber amplifiers as a digital laser source to generate high-power orbital angular momentum beams. Such an approach opens the path for higher-order non-symmetrical user-defined far field distributions.
View Article and Find Full Text PDFWe report on the coherent beam combining of 61 femtosecond fiber chirped-pulse amplifiers in a tiled-aperture configuration along with an interferometric phase measurement technique. Relying on coherent beam recombination in the far field, this technique appears suitable for the combination of a large number of fiber amplifiers. The 61 output beams are stacked in a hexagonal arrangement and collimated through a high fill factor hexagonal micro-lens array.
View Article and Find Full Text PDFA pulsed, single longitudinal mode, wavelength-tunable Tm:YAP laser is reported. We demonstrate 1 kHz stable operation with 230 µJ, 50 ns pulses and a spectrum linewidth narrowed below 4 pm (FWHM) close to the Fourier transform limit by use of a volume Bragg grating and a YAG etalon. The output wavelength was tuned from 1940 to 1960 nm owing to a transverse chirp of the period of the Bragg grating.
View Article and Find Full Text PDFCoherent beam combining in tiled-aperture configuration is demonstrated on seven femtosecond fiber amplifiers using an interferometric phase measurement technique. The residual phase error between two fibers is as low as λ/55 RMS and a combination efficiency of 48% has been achieved. The combined pulses are compressed to 216 fs, delivering 71 W average power at a repetition rate of 55 MHz.
View Article and Find Full Text PDFWe present an upconversion imaging experiment from the near-infrared to the visible spectrum. Using a dedicated broadband pump laser to increase the number of resolved elements converted in the image we obtain up to 56x64 spatial elements with a 2.7 nm wide pump spectrum, more than 10 times the number of elements accessible with a narrowband laser.
View Article and Find Full Text PDFWe present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm.
View Article and Find Full Text PDFCoherent beam combining in the femtosecond regime of a record number of 19 fibers is demonstrated. The interferometric phase measurement technique, particularly well suited to phase-lock a very large number of fibers, is successfully demonstrated in the femtosecond regime. A servo loop is implemented to control piezoelectric fiber stretchers for both phase and delay variation compensation.
View Article and Find Full Text PDFWe report an upconversion experiment using an orientation-patterned gallium arsenide (OP-GaAs) crystal to detect small mid-infrared signals on an InGaAs avalanche photodiode. A conversion efficiency up to 20% with a nonpolarized pulsed fiber pump is demonstrated. Our uncooled setup is favorably compared in terms of noise equivalent power, dynamic range, and response time to cryogenically cooled HgCdTe detectors.
View Article and Find Full Text PDFOptical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 μJ per pump pulse.
View Article and Find Full Text PDFWe demonstrate a nanosecond single-frequency nested cavity optical parametric oscillator (NesCOPO) based on orientation-patterned GaAs (OP-GaAs). Its low threshold energy of 10 μJ enables to pump it with a pulsed single-frequency Tm:YAP microlaser. Stable single-longitudinal-mode emission is obtained owing to Vernier spectral filtering provided by the dual-cavity doubly-resonant NesCOPO scheme.
View Article and Find Full Text PDFThis work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Čerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions.
View Article and Find Full Text PDFWe demonstrate a core-pumped Q-switched thulium-doped fiber laser system with fast tunability capability over 100 nm without any movable part. With up to 7 kW peak power in a diffraction-limited beam, this source is well adapted for pumping a frequency agile mid-IR parametric oscillator or amplifier based on Quasi-Phase-Match single-period crystals.
View Article and Find Full Text PDFWe present a technique for passive coherent fiber beam combining based on digital holography. In this method, the phase errors between the fibers are compensated by the diffracted phase-conjugated -1 order of a digital hologram. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams.
View Article and Find Full Text PDFA fibre-coupled 1.47µm laser diode end-pumped Er:YAG laser system comprising one oscillator and two single pass amplifiers is described. 120mJ pulses at a 30Hz repetition rate and 1.
View Article and Find Full Text PDFWe demonstrate a robust and simple method for measurement, stabilization and tuning of the frequency of cw mid-infrared (MIR) lasers, in particular of quantum cascade lasers. The proof of principle is performed with a quantum cascade laser at 5.4 µm, which is upconverted to 1.
View Article and Find Full Text PDFAn external cavity using a binary phase grating has been developed to achieve coherent combining of five quantum-cascade lasers emitting at 4.65 μm. The grating phase profile is designed to combine five beams of equal intensities into a single beam with a good efficiency (~75%).
View Article and Find Full Text PDFWe have designed a high-efficiency array generator composed of subwavelength grooves etched in a GaAs substrate for operation at 4.5 μm. The method used combines rigorous coupled wave analysis with an optimization algorithm.
View Article and Find Full Text PDFWe developed a Michelson-type cavity to achieve coherent combining of two quantum-cascade lasers, emitting at around 4.5microm. We report a cw combining efficiency of 85% (up to 91% near threshold) with good beam quality (M(2)<1.
View Article and Find Full Text PDFWe demonstrate what is to our knowledge the first realization of an optical parametric amplifier in orientation-patterned GaAs amplifying the emission of a quantum-cascade laser (QCL) with a distributed-feedback (DFB) structure. We report a gain as high as 53 dB at 4.5 mum, in good agreement with theoretical calculations.
View Article and Find Full Text PDFWe report on what are, to our knowledge, the best results obtained with an orientation-patterned GaAs optical parametric oscillator (OPO) pumped by a Q-switched 2 microm Ho:YAG laser. Up to 2.85 W are obtained for 6.
View Article and Find Full Text PDFA narrow-linewidth mid-IR source based on difference-frequency generation of an amplified 1.5 microm diode laser and a cw Tm-doped fiber laser in orientation-patterned (OP) GaAs has been developed and evaluated for spectroscopic applications. The source can be tuned to any frequency in the 7.
View Article and Find Full Text PDF