Publications by authors named "Lalitha Sastry"

Specialized membrane and cortical protein regions are common features of cells and are utilized to isolate differential cellular functions. In Drosophila photoreceptors, the apical membrane domain is defined by two distinct morphological membranes: the rhabdomere microvilli and the stalk membrane. To define the apical cortical protein complexes, we performed proximity labeling screens utilizing the rhabdomeric-specific protein PIP82 as bait.

View Article and Find Full Text PDF

Trypanosoma cruzi (T. cruzi) is the causative agent of Chagas' disease, a parasitic infection responsible for significant morbidity and mortality in Latin America. The current treatments have many serious drawbacks and new drugs are urgently required.

View Article and Find Full Text PDF

Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s).

View Article and Find Full Text PDF

Chagas' disease, caused by the protozoan parasite , is a potentially life-threatening condition that has become a global issue. Current treatment is limited to two medicines that require prolonged dosing and are associated with multiple side effects, which often lead to treatment discontinuation and failure. One way to address these shortcomings is through target-based drug discovery on validated protein targets.

View Article and Find Full Text PDF
Article Synopsis
  • Visceral leishmaniasis is a significant health issue worldwide, causing high rates of illness and death, highlighting the urgent need for new treatments.
  • Researchers developed a series of potential anti-leishmanial drugs based on a chemical structure called pyrazolopyrimidine, with the most promising compound being DDD853651/GSK3186899.
  • This leading compound has shown effectiveness in treating the disease in mouse models and works mainly by inhibiting a specific parasite enzyme (CRK12), making it a viable candidate for further drug development.
View Article and Find Full Text PDF

Trypanosoma vivax is one of the causative agents of Animal African Trypanosomosis in cattle, which is endemic in sub-Saharan Africa and transmitted primarily by the bite of the tsetse fly vector. The parasite can also be mechanically transmitted, and this has allowed its spread to South America. Diagnostics are limited for this parasite and in farm settings diagnosis is mainly symptom-based.

View Article and Find Full Text PDF

Background: The diagnosis of human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). There is no immunodiagnostic for HAT caused by T. b.

View Article and Find Full Text PDF

Animal African Trypanosomosis (AAT) presents a severe problem for agricultural development in sub-Saharan Africa. It is caused by several trypanosome species and current means of diagnosis are expensive and impractical for field use. Our aim was to discover antigens for the detection of antibodies to Trypanosoma congolense, one of the main causative agents of AAT.

View Article and Find Full Text PDF