Publications by authors named "Lalith Perera"

Article Synopsis
  • The study explores the aggregation process of α-synuclein, a protein linked to Parkinson's Disease and Multiple System Atrophy, and its implications for research.
  • Researchers determined the first atomic structure of mouse α-synuclein fibrils, revealing similarities to fibrils found in human conditions, but with important differences in their properties.
  • The findings indicate that mouse α-synuclein fibrils have altered behaviors, suggesting a need to reevaluate their use in developing diagnostic tools and treatments for related diseases.
View Article and Find Full Text PDF
Article Synopsis
  • APECED is a serious genetic autoimmune disorder linked to variants in the autoimmune regulator (AIRE) gene, with 16% of evaluated patients lacking known harmful variants, most of whom are of Puerto Rican descent.
  • Researchers discovered a deep intronic variant (c.1504-818 G>A) in these patients that causes a cryptic splice site leading to a dysfunctional protein through pseudoexon inclusion.
  • They developed an antisense oligonucleotide (ASO) that corrected this genetic issue, demonstrating the potential for targeted treatments in APECED patients.
View Article and Find Full Text PDF

Rationale: Spironolactone is a steroidal drug prescribed for a variety of medical conditions and is extensively metabolized quickly after administration. Measurement of spironolactone and its metabolites remains challenging using mass spectrometry (MS) due to in-source fragmentation and relatively poor ionization using electrospray ionization. Therefore, improved methods of measurements are needed, particularly in the case of small sample volumes.

View Article and Find Full Text PDF

Introduction: Adverse reactions are relatively common during peanut oral immunotherapy. To reduce the risk to the patient, some researchers have proposed modifying the allergen to reduce IgE reactivity, creating a putative hypoallergen. Analysis of recently cloned human IgG from patients treated with peanut immunotherapy suggested that there are three common conformational epitopes for the major peanut allergen Ara h 2.

View Article and Find Full Text PDF

Formation of active HIV-1 reverse transcriptase (RT) proceeds via a structural maturation process that involves subdomain rearrangements and formation of an asymmetric p66/p66' homodimer. These studies were undertaken to evaluate whether the information about this maturation process can be used to identify small molecule ligands that retard or interfere with the steps involved. We utilized the isolated polymerase domain, p51, rather than p66, since the initial subdomain rearrangements are largely limited to this domain.

View Article and Find Full Text PDF

The vast majority of severe (Type 0) spinal muscular atrophy (SMA) cases are caused by homozygous deletions of survival motor neuron 1 (). We report a case in which the patient has two copies of but clinically presents as Type 0 SMA. The patient is an African American male carrying a homozygous maternally inherited missense variant (c.

View Article and Find Full Text PDF

Asthma is a chronic disease of the airways that impairs normal breathing. The etiology of asthma is complex and involves multiple factors, including the environment and genetics, especially the distinct genetic architecture associated with ancestry. Compared to early-onset asthma, little is known about genetic predisposition to late-onset asthma.

View Article and Find Full Text PDF
Article Synopsis
  • Certain tRNA transcripts in bacteria, archaea, and eukarya contain introns and require splicing to become mature, with splicing in eukaryotes initiated by the TSEN complex.
  • The study reports cryo-electron microscopy structures of the human TSEN-pre-tRNA complex, revealing its architecture and binding interfaces, along with features important for recognizing pre-tRNA.
  • TSEN54 serves as a key scaffold in the complex, and the structures allow for visualization of mutations linked to pontocerebellar hypoplasia (PCH), shedding light on pre-tRNA splicing mechanisms and PCH-related disorders.
View Article and Find Full Text PDF

Introduction: Pet lipocalins are respiratory allergens with a central hydrophobic ligand-binding cavity called a calyx. Molecules carried in the calyx by allergens are suggested to influence allergenicity, but little is known about the native ligands.

Methods: To provide more information on prospective ligands, we report crystal structures, NMR, molecular dynamics, and florescence studies of a dog lipocalin allergen Can f 1 and its closely related (and cross-reactive) cat allergen Fel d 7.

View Article and Find Full Text PDF

Once considered potential liabilities, the modern era witnesses a renaissance of interest in covalent inhibitors in drug discovery. The available toolbox of electrophilic warheads is limited by constraints on tuning reactivity and selectivity. Following our work on a class of ferroptotic agents termed CETZOLEs, we discovered new tunable heterocyclic electrophiles which are capable of inducing ferroptosis.

View Article and Find Full Text PDF

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes.

View Article and Find Full Text PDF

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized.

View Article and Find Full Text PDF

Azo dyes are defined by the presence of a characteristic N=N group. Sudan I and Sudan II are synthetic azo dyes that have been used as coloring agents. Although animal toxicity studies suggest that Sudan dyes are mutagenic, their molecular mechanism of action is unknown, thus making it challenging to establish thresholds for tolerable daily intake or to understand how these molecules could be modified to ameliorate toxicity.

View Article and Find Full Text PDF

Structural snapshots of protein/ligand complexes are a prerequisite for gaining atomic level insight into enzymatic reaction mechanisms. An important group of enzymes has been deprived of this analytical privilege: members of the protein tyrosine phosphatase (PTP) superfamily with catalytic WPD-loops lacking the indispensable general-acid/base within a tryptophan-proline-aspartate/glutamate context. Here, we provide the ligand/enzyme crystal complexes for one such PTP outlier: Arabidopsis thaliana Plant and Fungi Atypical Dual Specificity Phosphatase 1 (AtPFA-DSP1), herein unveiled as a regioselective and efficient phosphatase towards inositol pyrophosphate (PP-InsP) signaling molecules.

View Article and Find Full Text PDF

We recently reported a new class of imidazole-based chalcones as potential antimitotic agents. In view of their promising cytotoxic activity, a comprehensive structure-activity relationship (SAR) of these compounds was undertaken focusing on four major structural variations: the length of the molecule, the Michael acceptor character, the nature and substitution pattern of ring B, and the nature of the amide functionality tethering ring B. These second-generation analogs (IBCs) demonstrated a superior bioactivity profile than the previously reported imidazole chalcones (referred to as IPEs).

View Article and Find Full Text PDF

We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator.

View Article and Find Full Text PDF

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes.

View Article and Find Full Text PDF

Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans.

View Article and Find Full Text PDF

Despite the advances in treatment strategies, cancer is still the second leading cause of death in the USA. A majority of the currently used cancer drugs have limitations in their clinical use due to poor selectivity, toxic side effects and multiple drug resistance, warranting the development of new anticancer drugs of different mechanisms of action. Here we describe the design, synthesis and initial biological evaluation of a new class of antimitotic agents that modulate tubulin polymerization.

View Article and Find Full Text PDF

Several mutations in the gene for the mitochondrial single stranded DNA binding protein (SSBP1) have recently been implicated in human disease, but initial reports are insufficient to explain the molecular mechanism of disease, including the possible role of SSBP1 heterotetramers in heterozygous patients. Here we employed molecular simulations to model the dynamics of wild type and 31 variant SSBP1 tetramer systems, including 7 variant homotetramer and 24 representative heterotetramer systems. Our simulations indicate that all variants are stable and most have stronger intermonomer interactions, reduced solvent accessible surface areas, and a net loss of positive surface charge.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) μ prepares breaks for end-joining and this is required for successful NHEJ in vivo.

View Article and Find Full Text PDF

Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3' of uridines, it is unknown if Nsp15 has any additional substrate preferences.

View Article and Find Full Text PDF

The emergence of multidrug resistance (MDR) in the clinic is a significant problem for a successful treatment of human cancers. Overexpression of various ABC transporters (P-gp, BCRP and MRP's), which remove anticancer drugs in an ATP-dependent manner, is linked to the emergence of MDR. Attempts to modulate MDR have not been very successful in the clinic.

View Article and Find Full Text PDF

Human Nbs1, a component of the MRN complex involved in DNA double strand break repair, contains a concatenated N-terminal FHA-BRCT1/2 sequence that supports interaction with multiple phosphopeptide binding partners. MDC1 binding localizes Nbs1 to the damage site, while binding of CDK-phosphorylated CtIP activates additional ATM-dependent CtIP phosphorylation, modulating substrate-dependent resection. We have investigated the phosphopeptide binding characteristics of Nbs1 BRCT1/2 based on a molecular modeling approach that revealed structural homology with the tandem TopBP1 BRCT7/8 domains.

View Article and Find Full Text PDF