Publications by authors named "Lalitanand N Surampudi"

We report methane's osmotic virial coefficient over the temperatures 275 to 370 K and pressures from 1 bar up to 5000 bar evaluated using molecular simulations of a united-atom description of methane in TIP4P/2005 water. In the first half of this work, we describe an approach for calculating the water-mediated contribution to the methane-methane potential-of-mean force over all separations down to complete overlap. The enthalpic, entropic, heat capacity, volumetric, compressibility, and thermal expansivity contributions to the water-mediated interaction free energy are subsequently extracted from these simulations by fitting to a thermodynamic expansion over all the simulated state points.

View Article and Find Full Text PDF

The use of the indirect Fourier transform methods for evaluating structural parameters directly in real space with small-angle scattering measurements is validated for the analysis of protein-surfactant complexes. An efficient Monte Carlo approach rapidly generates in silico structures based on a realistic pearl-necklace model for denatured proteins decorated with surfactant micelles. Corresponding scattering profiles are calculated and averaged over a large number of possible configurations for each structure.

View Article and Find Full Text PDF

Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures.

View Article and Find Full Text PDF