Thermography is a non-invasive and non-contact method for detecting cancer in its initial stages by examining the temperature variation between both breasts. Preprocessing methods such as resizing, ROI (region of interest) segmentation, and augmentation are frequently used to enhance the accuracy of breast thermogram analysis. In this study, a modified U-Net architecture (DTCWAU-Net) that uses dual-tree complex wavelet transform (DTCWT) and attention gate for breast thermal image segmentation for frontal and lateral view thermograms, aiming to outline ROI for potential tumor detection, was proposed.
View Article and Find Full Text PDF