Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge.
View Article and Find Full Text PDFOncogenic KRAS (KRAS) is critical for the initiation and maintenance of pancreatic ductal adenocarcinoma (PDAC) and is a known repressor of tumor immunity. Conditional elimination of KRAS in genetic mouse models of PDAC leads to the reactivation of FAS, CD8 T cell-mediated apoptosis, and complete eradication of tumors. KRAS elimination recruits activated CD4 and CD8 T cells and promotes the activation of antigen-presenting cells.
View Article and Find Full Text PDFThe KRAS mutation is present in nearly half of pancreatic adenocarcinomas (PDAC). We investigated the effects of inhibiting the KRAS mutant protein with MRTX1133, a non-covalent small molecule inhibitor of KRAS, on early and advanced PDAC and its influence on the tumor microenvironment. Employing 16 different models of KRAS-driven PDAC, we demonstrate that MRTX1133 reverses early PDAC growth, increases intratumoral CD8 effector T cells, decreases myeloid infiltration, and reprograms cancer-associated fibroblasts.
View Article and Find Full Text PDFStem cell differentiation is dictated by the dynamic crosstalk between cells and their underlying extracellular matrix. While the importance of matrix degradation mediated by enzymes such as matrix metalloproteinases (MMPs) in the context of cancer invasion is well established, the role of MMPs in stem cell differentiation remains relatively unexplored. Here we address this question by assaying MMP expression and activity during differentiation of mouse embryonic stem cells (mESCs) on mouse embryonic fibroblast (MEF) derived matrices (MEFDMs) of varying stiffness and composition.
View Article and Find Full Text PDFGrowth cone-mediated axonal outgrowth and accurate synaptic targeting are central to brain morphogenesis. Translocation of the growth cone necessitates mechanochemical regulation of cell-extracellular matrix interactions and the generation of propulsive traction forces onto the growth environment. However, the molecular mechanisms subserving force generation by growth cones remain poorly characterized.
View Article and Find Full Text PDFDifferentiation of stem cells into neurogenic lineage is of great interest for treatment of neurodegenerative diseases. While the role of chemical cues in regulating stem cell fate is well appreciated, the identification of physical cues has revolutionized the field of tissue engineering leading to development of scaffolds encoding one or more physical cues for inducing stem cell differentiation. In this study, using human mesenchymal stem cells (hMSCs) and mouse embryonic stem cells (mESCs), we have tested if stiffness and topography can be collectively tuned for inducing neuronal differentiation by culturing these cells on polyacrylamide hydrogels of varying stiffness (5, 10, and 20 kPa) containing rectangular grooves (10, 15, and 25 μm in width).
View Article and Find Full Text PDFMalaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs.
View Article and Find Full Text PDFFor maintaining pluripotency, mouse embryonic stem cells (mESCs) are typically grown on mitotically inactivated mouse embryonic fibroblasts (MEFs). While the role of MEF conditioned media (MEFCM) and leukemia inhibitory factor (LIF) in regulating mESC pluripotency has led to culturing of mESCs on LIF/MEFCM supplemented gelatin-coated substrates, the role of physical interactions between MEFs and mESCs in regulating mESC pluripotency remains to be fully understood. Here, we address this question by characterizing the physicochemical properties of MEF derived matrices (MEFDMs), and probing their role in regulating mESC fate.
View Article and Find Full Text PDFInfection of the genitourinary tract with Group B Streptococcus (GBS), an opportunistic gram positive pathogen, is associated with premature rupture of amniotic membrane and preterm birth. In this work, we demonstrate that GBS produces membrane vesicles (MVs) in a serotype independent manner. These MVs are loaded with virulence factors including extracellular matrix degrading proteases and pore forming toxins.
View Article and Find Full Text PDFPhysical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types.
View Article and Find Full Text PDF