Molecular doping and detection are at the forefront of graphene research, a topic of great interest in physical and materials science. Molecules adsorb strongly on graphene, leading to a change in electrical conductivity at room temperature. However, a common impediment for practical applications reported by all studies to date is the excessively slow rate of desorption of important reactive gases such as ammonia and nitrogen dioxide.
View Article and Find Full Text PDFEffective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO(2) surface to densely interconnected networks on the nanoporous SiO(2) are accompanied by an almost two-order of magnitude increase of the nanotube density.
View Article and Find Full Text PDFUnique macrostructures known as spun carbon-nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room-temperature conductivities of about 5 x 10(2) S cm(-1). Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity.
View Article and Find Full Text PDFWe report on the synthesis of thin composites of diamond-like carbon (DLC) and nanocrystalline ZrO(2) deposited using pulsed direct current plasma-enhanced chemical vapor deposition at low temperatures (<120 degrees C). Films containing up to 21at.% Zr were prepared (hydrogen was not included in the calculation) and their structural and surface properties were determined using a number of spectroscopic methods and contact angle measurements.
View Article and Find Full Text PDF