Publications by authors named "Lakshan Manathunga"

Aims/hypothesis: Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes.

Methods: The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red.

View Article and Find Full Text PDF

The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to β-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion.

View Article and Find Full Text PDF

Amyloids are partially ordered, proteinaceous, β-sheet rich deposits that have been implicated in a wide range of diseases. An even larger set of proteins that do not normally form amyloid in vivo can be induced to do so in vitro. A growing number of structures of amyloid fibrils have been reported and a common feature is the presence of a tightly packed core region in which adjacent monomers pack together in extremely tight interfaces, often referred to as steric zippers.

View Article and Find Full Text PDF

Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide hormone secreted by the pancreatic β-cells. IAPP plays a role in glycemic regulation, but in the pre-type-2 diabetic state, it aggregates to form an islet amyloid. The process of islet amyloid formation contributes to β-cell dysfunction and disease progression.

View Article and Find Full Text PDF

The fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH) is widely used as a probe of membrane order. We show that DPH also interacts with amyloid fibrils formed by human amylin (h-amylin, also known as islet amyloid polypeptide) in solution, and this results in a 100-fold increase in DPH fluorescence for a sample of 20 μM h-amylin and 0.25 μM DPH.

View Article and Find Full Text PDF