The electroencephalogram (EEG) serves as an essential tool in exploring brain activity and holds particular importance in the field of mental health research. This review paper examines the application of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), for classifying schizophrenia (SCZ) through EEG. It includes a thorough literature review that addresses the difficulties, methodologies, and discoveries in this field.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2024
Myocardial infarction (MI), referred to as a heart attack, is a life-threatening condition that happens due to blood clots, typically, blood flow to a portion of the heart muscle is blocked. The cardiac muscle may become permanently damaged if there is insufficient oxygen and blood flow to the affected area. It's crucial to treat MI as soon as possible because even a small delay might have serious effects.
View Article and Find Full Text PDFTo design an automated glaucoma detection system for early detection of glaucoma using fundus images. Glaucoma is a serious eye problem that can cause vision loss and even permanent blindness. Early detection and prevention are crucial for effective treatment.
View Article and Find Full Text PDFRecently, electroencephalogram (EEG) signals have shown great potential to recognize human emotions. The goal of effective computing is to assist computers in understanding various types of emotions via human-computer interaction (HCI). Multichannel EEG signals are used to measure the electrical activity of the brain in space and time.
View Article and Find Full Text PDFCoronavirus disease (COVID-19) is a class of SARS-CoV-2 virus which is initially identified in the later half of the year 2019 and then evolved as a pandemic. If it is not identified in the early stage then the infection and mortality rates increase with time. A timely and reliable approach for COVID-19 identification has become important in order to prevent the disease from spreading rapidly.
View Article and Find Full Text PDFPortable electroencephalogram (EEG) systems are often used in health care applications to record brain signals because their ease of use. An electrooculogram (EOG) is a common, low frequency, high amplitude artifact of the eye blink signal that might confuse disease diagnosis. As a result, artifact removal approaches in single EEG portable devices are in high demand.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2022
. Electrocardiogram (ECG) signal is a record of the electrical activity of the heart and contains important clinical data about cardiovascular-related misfunctioning. The goal of the present work is to develop an improved QRS detection algorithm for the detection of heart abnormalities.
View Article and Find Full Text PDFMyocardial infarction (MI) happens when blood stops circulating to an explicit segment of the heart causing harm to the heart muscles. Vectorcardiography (VCG) is a technique of recording direction and magnitude of the signals that are produced by the heart in a 3-lead representation. In this work, we present a technique for detection of MI in the inferior portion of heart using short duration VCG signals.
View Article and Find Full Text PDFAccurate detection of key components in an electrocardiogram (ECG) plays a vital role in identifying cardiovascular diseases. In this work, we proposed a novel and lightweight P, QRS, and T peaks detector using adaptive thresholding and template waveform. In the first stage, we proposed a QRS complex detector, which utilises a novel adaptive thresholding process followed by threshold initialisation.
View Article and Find Full Text PDFDetection of QRS-complex in the electrocardiogram (ECG) plays a decisive role in cardiac disorder detection. We face many challenges in terms of powerline interference, baseline drift, and abnormal varying peaks. In this work, we propose an exploratory data analysis (EDA) based efficient QRS-complex detection technique with minimal computational load.
View Article and Find Full Text PDFPurpose: T-wave in electrocardiogram (ECG) is a vital wave component and has potential of diagnosing various cardiac disorders. The present work proposes a novel technique for T-wave peak detection using minimal pre-processing and simple root mean square based decision rule.
Methods: The technique uses a two-stage median filter and a Savitzky-Golay smoothing filter for pre-processing.