We present wavelength-division multiplexed coherent transmission in an O-band amplified link enabled by bismuth-doped fiber amplifiers (BDFAs). Transmission of 4 × 25 GBd DP-16QAM (4 × 200 Gb/s) is demonstrated over a single span of 50-km length, occupying a bandwidth of 4.7 THz across the wavelengths 1323 nm to 1351 nm.
View Article and Find Full Text PDFThe recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly become a pandemic, which calls for prompt action in identifying suspected cases at an early stage through risk prediction. To suppress its further spread, we exploit the social relationships between mobile devices in the Social Internet of Things (SIoT) to help control its propagation by allocating the limited protective resources to the influential so-called high-degree individuals to stem the tide of precipitated spreading. By exploiting the so-called differential contact intensity and the infectious rate in susceptible-exposed-infected-removed (SEIR) epidemic model, the resultant optimization problem can be transformed into the minimum weight vertex cover (MWVC) problem of graph theory.
View Article and Find Full Text PDFIn this paper, we present the design and the experimental demonstration of a radio over fiber (RoF) network relying on state-of-the-art spatial modulation (SM), that activates one out of multiple antennas. We propose a novel RoF-aided SM encoding scheme, where the optical single side-band signal generated by a Mach-Zehnder modulator (MZM) is used for both the antenna selection and for the classic modulated symbol selection. The SM encoding is optically processed in a centralized fashion, aiming for the reduction of power consumption and for enabling cost-effective maintenance and management, which can be employed in the context of a cloud radio access network (C-RAN) and a small-cell front-haul.
View Article and Find Full Text PDFWhen quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover's QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated.
View Article and Find Full Text PDFOrthogonal frequency-division multiplexing (OFDM) has been widely used in visible light communication systems to achieve high-rate data transmission. Due to the nonlinear transfer characteristics of light emitting diodes (LEDs) and owing the high peak-to-average-power ratio of OFDM signals, the transmitted signal has to be scaled and biased before modulating the LEDs. In this contribution, an adaptive scaling and biasing scheme is proposed for OFDM-based visible light communication systems, which fully exploits the dynamic range of the LEDs and improves the achievable system performance.
View Article and Find Full Text PDFWhite light emitting diodes (LEDs) have been widely utilized for illumination owing to their desired properties of inherent bright output, high efficiency, low power consumption and long life-time. They are also increasingly applied in optical wireless communications for realizing high data rate transmission. This paper presents an improved scheme relying on the insertion of a simple predistortion module before the decoder at the receiver of optical wireless communication systems that use white LEDs.
View Article and Find Full Text PDFIn this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2014
A joint source-channel coding has attracted substantial attention with the aim of further exploiting the residual correlation residing in the encoded video signals for the sake of improving the reconstructed video quality. In our previous paper, a first-order Markov process model was utilized as an error concealment tool for exploiting the intra-frame correlation residing in the Wyner-Ziv (WZ) frame in the context of pixel-domain distributed video coding. In this contribution, we exploit the interview correlation with the aid of an interview motion search in distributed multi-view video coding (DMVC).
View Article and Find Full Text PDFIn this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.
View Article and Find Full Text PDFA novel Photon-Counting Spatial-Diversity-and-Multiplexing (PC-SDM) scheme is proposed for high-speed Free-Space Optical (FSO) transmission over shot-noise limited Poisson channels experiencing turbulence-induced fading. In particular, Iterative Parallel Interference Cancellation (Iter-PIC) aided Q-ary Pulse Position Modulation (Q-PPM) is employed. Simulation results demonstrate that our proposed scheme exhibits a high integrity and a high throughput, while mitigating the effects of multi-stream interference and background radiation noise.
View Article and Find Full Text PDFIEEE Trans Neural Netw
September 2008
A nonlinear beamforming assisted detector is proposed for multiple-antenna-aided wireless systems employing complex-valued quadrature phase shift-keying modulation. By exploiting the inherent symmetry of the optimal Bayesian detection solution, a novel complex-valued symmetric radial basis function (SRBF)-network-based detector is developed, which is capable of approaching the optimal Bayesian performance using channel-impaired training data. In the uplink case, adaptive nonlinear beamforming can be efficiently implemented by estimating the system's channel matrix based on the least squares channel estimate.
View Article and Find Full Text PDFIEEE Trans Neural Netw
May 2008
In this paper, we propose a powerful symmetric radial basis function (RBF) classifier for nonlinear detection in the so-called "overloaded" multiple-antenna-aided communication systems. By exploiting the inherent symmetry property of the optimal Bayesian detector, the proposed symmetric RBF classifier is capable of approaching the optimal classification performance using noisy training data. The classifier construction process is robust to the choice of the RBF width and is computationally efficient.
View Article and Find Full Text PDF