Publications by authors named "Laixiang Ge"

Mesoderm development is a finely tuned process initiated by the differentiation of pluripotent epiblast cells. Serine/threonine kinase 40 (STK40) controls the development of several mesoderm-derived cell types, its overexpression induces differentiation of mouse embryonic stem cells (mESCs) toward the extraembryonic endoderm, and knockout (KO) results in multiple organ failure and is lethal at the perinatal stage in mice. However, molecular mechanisms underlying the physiological functions of STK40 in mesoderm differentiation remain elusive.

View Article and Find Full Text PDF

The serine threonine kinase Stk40 has been shown to involve in mouse embryonic stem cell differentiation, pulmonary maturation and adipocyte differentiation. Here we report that targeted deletion of Stk40 leads to fetal liver hypoplasia and anemia in the mouse embryo. The reduction of erythrocytes in the fetal liver is accompanied by increased apoptosis and compromised erythroid maturation.

View Article and Find Full Text PDF

The mammalian post-implantation embryo has been extensively investigated at the tissue level. However, to unravel the molecular basis for the cell-fate plasticity and determination, it is essential to study the characteristics of individual cells. In particular, the individual definitive endoderm (DE) cells have not been characterized Here, we report gene expression patterns in single cells freshly isolated from mouse embryos on days 5.

View Article and Find Full Text PDF

The chromatin landscape and cellular metabolism both contribute to cell fate determination, but their interplay remains poorly understood. Using genome-wide siRNA screening, we have identified prohibitin (PHB) as an essential factor in self-renewal of human embryonic stem cells (hESCs). Mechanistically, PHB forms protein complexes with HIRA, a histone H3.

View Article and Find Full Text PDF

Skeletal muscle differentiation is a precisely coordinated process, and the molecular mechanism regulating the process remains incompletely understood. Here we report the identification of serine/threonine kinase 40 (Stk40) as a novel positive regulator of skeletal myoblast differentiation in culture and fetal skeletal muscle formation in vivo We show that the expression level of Stk40 increases during skeletal muscle differentiation. Down-regulation and overexpression of Stk40 significantly decreases and increases myogenic differentiation of C2C12 myoblasts, respectively.

View Article and Find Full Text PDF