Publications by authors named "Laiting Chi"

Background: Pain is a major challenge in performing ultrasound-guided percutaneous microwave ablation (PMWA) of uterine myomas. Inadequate analgesia by local anesthetics hinders the possibility of conducting PMWA of uterine myomas in the Ambulatory Surgery Center (ASC) of the Department of Ultrasound.

Objective: The superior hypogastric plexus (SHP) forms a suitable target for pain relief through the blockade, as it contains nociceptive afferent fibers from pelvic organs such as the uterus, rectum, and bladder.

View Article and Find Full Text PDF

A growing body of evidence highlights the crucial role of metabolic reprogramming in activated immune cells, significantly contributing to both the initiation and progression of neuroinflammation and neurodegenerative diseases. The voltage-gated H channel (Hv1) has been reported to be involved in microglial activation and acts as a key driver of neuroinflammation. This study aimed to explore how Hv1-mediated metabolic reprogramming contributes to neuroinflammation and to assess the therapeutic potential of the Hv1 inhibitor 2-GBI in a model of lipopolysaccharide (LPS)-induced neuroinflammation.

View Article and Find Full Text PDF

Background: This study investigated the potential therapeutic effects of acupoint catgut embedding (ACE) at ST36 and BL13 on lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) in rats.

Materials And Methods: Male Sprague-Dawley rats were randomized into the normal saline (NS group with a sham procedure), lipopolysaccharide (LPS group with a sham procedure), and LPS plus ACE (LPS+ACE with ACE at bilateral BL13 and ST36 acupoints one day before LPS injection) groups. After intratracheal instillation of normal saline or LPS (0.

View Article and Find Full Text PDF

Previous studies proposed that acidic reperfusion may be a protective strategy for myocardial ischemia-reperfusion therapy with potential of clinical transformation. In this study, we investigated whether therapeutic hypercapnia could mimic acidosis postconditioning in isolated hearts with a 30-min left coronary artery ligation-reperfusion model in rats. Therapeutic hypercapnia (inhalation 20% CO for 10 min) is cardioprotective with a strict therapeutic time window and acidity: it reduced the infarct ratio and serum myocardial enzyme and increased the myocardial ATP content.

View Article and Find Full Text PDF

Background: This study investigated whether therapeutic hypercapnia (TH) ameliorated blood-brain barrier (BBB) damage and improved the neurologic outcome in a rat model of lateral fluid percussion injury (FPI), and explored the possible underlying mechanism.

Methods: Rats underwent lateral FPI and received inhalation of 30%O-70%N or 30%O-N plus CO to maintain arterial blood CO tension (PaCO) between 80 and 100 mmHg for 3 h. To further explore the possible mechanisms for the protective effects of TH, a PKC inhibitor staurosporine or PKCαβ inhibitor GÖ6976 was administered via intracerebral ventricular injection.

View Article and Find Full Text PDF

Background: The endoplasmic reticulum chaperone protein Sigma-1 receptor (Sig-1 R) and mitogen-activated protein kinases (MAPKs) are involved in the mechanism of pain. Acupoint stimulation exerts an exact antihyperalgesic effect in inflammatory pain. However, whether Sig-1 R and MAPKs are associated with the acupoint stimulation-induced analgesic effects is not clear.

View Article and Find Full Text PDF

The demand for using parasympathetic activation for stroke therapy is unmet. In the current study, we investigated whether the neuroprotection provided by electroacupuncture (EA) in an experimental stroke model was associated with activation of the parasympathetic nervous system (PNS). The results showed that parasympathetic dysfunction (PD), performed as unilateral vagotomy combined with peripheral atropine, attenuated both the functional benefits of EA and its effects in improving cerebral perfusion, reducing infarct volume, and hindering apoptosis, neuronal and peripheral inflammation, and oxidative stress.

View Article and Find Full Text PDF