Repurposing clinically available drugs to treat the new coronavirus disease 2019 (COVID-19) is an urgent need in the course of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-2) pandemic, as very few treatment options are available. The iminosugar Miglustat is a well-characterized drug for the treatment of rare genetic lysosome storage diseases, such as Gaucher and Niemann-Pick type C, and has also been described to be active against a variety of enveloped viruses. The activity of Miglustat is here demonstrated in the micromolar range for SARS-CoV-2 in vitro.
View Article and Find Full Text PDFThere is an urgent need to identify antivirals against the coronavirus SARS-CoV-2 in the current COVID-19 pandemic and to contain future similar emergencies early on. Specific side-chain cholesterol oxidation products of the oxysterols family have been shown to inhibit a large variety of both enveloped and non-enveloped human viral pathogens. Here we report on the in vitro inhibitory activity of the redox active oxysterol 27-hydroxycholesterol against SARS-CoV-2 and against one of the common cold agents HCoV-OC43 human coronavirus without significant cytotoxicity.
View Article and Find Full Text PDFAptamers are oligonucleotide reagents with high affinity and specificity, which among other therapeutic and diagnostic applications have the capability of acting as delivery agents. Thus, aptamers are capable of carrying small molecules, nanoparticles, radiopharmaceuticals or fluorescent agents as well as nucleic acid therapeutics specifically to their target cells. In most cases, the molecules may possess interesting therapeutic properties, but their lack of specificity for a particular cell type, or ability to internalise in such a cell, hinders their clinical development, or cause unwanted side effects.
View Article and Find Full Text PDF