This paper presents the design of an underactuated adaptive humanoid Manipulator (UAHM) featuring a link-spring telescopic rod-slide mechanism, which is capable of basic human-like grasping functions. Initially, the mechanical structure of the UAHM is introduced, with a detailed exposition of its transmission mode, finger architecture, and overall configuration. Subsequently, the kinematic and static models of the UAHM are delineated, elucidating the relationship between the phalangeal contact forces, contact positions, and bending angles during both fingertip and envelope grasping.
View Article and Find Full Text PDFArc welded 316 stainless steel coatings with flux-cored wires are very promising for marine service environments due to their low cost, high efficiency, and satisfactory performance, while they suffers from Cr dilution during the preparation process. Herein, based on the consideration of increasing the Cr content and ensuring the same value of the Cr/Ni equivalence ratio (Cr/Ni), 316-modified flux-cored wires, 316F (19Cr-12Ni-3Mo) and 316G (22Cr-14Ni-3Mo), were designed under the guidance of a Schaeffler diagram for the improvement of the electrochemical and mechanical properties of 316 stainless steel coatings. The designed flux-cored wires were welded into a three-layer cladding by the tungsten inert gas welding (TIG) process, and the microstructure, corrosion resistance, and mechanical properties of the claddings were investigated.
View Article and Find Full Text PDFIEEE J Transl Eng Health Med
December 2023
Prosthetic hands are frequently rejected due to frustrations in daily uses. By adopting principles of human neuromuscular control, it could potentially achieve human-like compliance in hand functions, thereby improving functionality in prosthetic hand. Previous studies have confirmed the feasibility of real-time emulation of neuromuscular reflex for prosthetic control.
View Article and Find Full Text PDFMicromachines (Basel)
July 2022
Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint is proposed to develop a novel cable-driven snake-arm robot with multiple degrees of freedom (DOF). Furthermore, the kinematics of the cable-driven snake-arm robot are established, and the mapping between actuator space and joint space is simplified by bending decoupling motion in the multiple segments. The workspace and bending configurations of the robot are obtained.
View Article and Find Full Text PDFSensors (Basel)
September 2021
The valve train is one of the main sources of engine vibration, and its dynamic performance is crucial for output power and fuel consumption. The flexibilities of slender bars and beams should be emphasised in the design of valve trains to develop high-power and high-speed engines with industrial applications. A flexible dynamic model of a valve train system is proposed.
View Article and Find Full Text PDF