Camonsertib is a novel ATR kinase inhibitor in clinical development for advanced cancers targeting sensitizing mutations. This article describes the identification and biosynthesis of an N-glucuronide metabolite of camonsertib. This metabolite was first observed in human hepatocyte incubations and was subsequently isolated to determine the structure, evaluate its stability as part of bioanalytical method development and for use as a standard for estimating its concentration in Phase I samples.
View Article and Find Full Text PDFThree novel conjugation metabolites of colchicine were identified in rat bile facilitated by enhanced on-line liquid chromatography-accurate radioisotope counting. The known 2- and 3-demethylcolchicines (DMCs) underwent O-sulfate conjugation in addition to the previously described O-glucuronidation. 2-DMC was preferably O-glucuronidated, whereas 3-DMC predominantly yielded O-sulfation conjugates, indicating phase II conjugation regiopreferences.
View Article and Find Full Text PDFThe discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats.
View Article and Find Full Text PDFThree eremophilane sesquiterpenes (1, 2, and 3) were isolated from Penicillium roqueforti DAOM 232127, and their structures were established. The new (3S)-3-acetoxyeremophil-1(2),7(11),9(10)-trien-8-one (3) is a likely biosynthetic precursor of PR toxin. 1-Hydroxyeremophil-7(11),9(10)-dien-8-one (1) is related to the immunosuppressant cuspidatol.
View Article and Find Full Text PDFA 13-step synthesis of (+)-cyanthiwigin-AC (2) from (+)-Hajos-Parrish ketone derivative 8b and dimesylate 9c employing deconjugative spiro-bis-alkylation strategy is described. [reaction: see text].
View Article and Find Full Text PDFMetabolites of the potent DP antagonist, MK-0524, were generated using in vitro systems including hepatic microsomes and hepatocytes. Four metabolites (two hydroxylated diastereomers, a ketone and an acyl glucuronide) were characterized by LC-MS/MS and 1H NMR. Larger quantities of these metabolites were prepared by either organic synthesis or biosynthetically to be used as standards in other studies.
View Article and Find Full Text PDFL-454,560 is a potent phosphodiesterase 4 (PDE4) inhibitor which was identified as a development candidate for the treatment of asthma and chronic obstructive pulmonary disease (COPD). As part of the discovery of this compound, interspecies in vitro metabolism data was generated using liver microsomes and hepatocytes in order to understand the metabolic fate of the compound. In microsomes, metabolism of the 3-methyl-1,2,4-oxadiazole ring was the predominant pathway observed, including ring cleavage.
View Article and Find Full Text PDFThe discovery and SAR of a new series of substituted 8-arylquinoline PDE4 inhibitors are herein described. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of emesis to efficacy in several animal models. Typical optimized compounds from this series are potent inhibitors of PDE4 (IC(50)<1nM) and also of LPS-induced TNF-alpha release in human whole blood (IC(50)<0.
View Article and Find Full Text PDFTetrahydrogestrinone (18a-homo-pregna-4,9,11-trien-17beta-ol-3-one, THG) is an anabolic androgenic steroid sold to athletes as an undetectable performance enhancer. Being an unapproved substance, no legitimate in vivo human excretion studies could be performed to identify urinary markers of this doping agent. In vitro systems were used as an alternative approach to study the human metabolism of THG and the gestrinone analogue, which is a marketed drug.
View Article and Find Full Text PDFA series of novel ortho-substituted cinnamic acids have been synthesized, and their binding activity and selectivity on the four prostaglandin E(2) receptors evaluated. Many of them are very potent and selective EP(3) antagonists (K(i) 3-10 nM), while compound 9 is a very good and selective EP(2) agonist (K(i) 8 nM). The biological profile of the EP(2) agonist 9 in vivo and the metabolic profile of selected EP(3) antagonists are also reported.
View Article and Find Full Text PDFPolyaromatic quinones, such as the environmental pollutants 9,10-phenanthrenediones, elicit a wide range of responses including growth inhibition, immune suppression, and glucose normalization in diabetic models. Yet the molecular mechanisms behind these effects remain controversial. Here we report that many of them are oxygen-dependent and catalytic inactivators of protein tyrosine phosphatases (PTP).
View Article and Find Full Text PDFCytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Residue Asp301 has been characterized as being involved in electrostatic interactions with substrates on the basis of homology modeling and site-directed mutagenesis experiments [Ellis, S. W.
View Article and Find Full Text PDFIt has been observed that 2-(E)-benzylidene-1-indanone (1) undergoes dimerization under basic conditions. The reaction is highly stereoselective and provides almost exclusively dimer 2b using NaHCO(3)/DMF, guanidine carbonate/DMF, or Cs(2)CO(3)/CH(3)CN. The structure and the relative stereochemistry of compound 2b were initially established on the basis of COSY, HMQC, HMBC, and NOESY NMR correlation techniques.
View Article and Find Full Text PDF