An innovative process to multifunctional vitrimer nanocomposites with a percolative MXene minor phase is reported, marking a significant advancement in creating stimuli-repairable, reinforced, sustainable, and conductive nanocomposites at diminished loadings. This achievement arises from a Voronoi-inspired biphasic morphological design via a straight-forward three-step process involving ambient-condition precipitation polymerization of micron-sized prepolymer powders, aqueous powder-coating with 2D MXene (TiCT), and melt-pressing of MXene-coated powders into crosslinked films. Due to the formation of MXene-rich boundaries between thiourethane vitrimer domains in a pervasive low-volume fraction conductive network, a low percolation threshold (≈0.
View Article and Find Full Text PDFStability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive.
View Article and Find Full Text PDF