Publications by authors named "Lain X Pierce"

A recently reported behavioral screen in larval zebrafish for phenocopiers of known anesthetics and associated drugs yielded an isoflavone. Related isoflavones have also been reported as GABA potentiators. From this, we synthesized a small library of isoflavones and incorporated an in vivo phenotypic approach to perform structure-behavior relationship studies of the screening hit and related analogs via behavioral profiling, patch-clamp experiments, and whole brain imaging.

View Article and Find Full Text PDF

Impaired formation of the biliary network can lead to congenital cholestatic liver diseases; however, the genes responsible for proper biliary system formation and maintenance have not been fully identified. Combining computational network structure analysis algorithms with a zebrafish forward genetic screen, we identified 24 new zebrafish mutants that display impaired intrahepatic biliary network formation. Complementation tests suggested these 24 mutations affect 24 different genes.

View Article and Find Full Text PDF

Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in the nckap1l gene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex.

View Article and Find Full Text PDF

The intrahepatic biliary network is a highly branched three-dimensional network lined by biliary epithelial cells, but how its branching patterns are precisely established is not clear. We designed a new computer-based algorithm that quantitatively computes the structural differences of the three-dimensional networks. Utilizing the algorithm, we showed that inhibition of Cyclin-dependent kinase 5 (Cdk5) led to reduced branching in the intrahepatic biliary network in zebrafish.

View Article and Find Full Text PDF

CHARGE syndrome is a sporadic autosomal-dominant genetic disorder characterized by a complex array of birth defects so named for its cardinal features of ocular coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Approximately two-thirds of individuals clinically diagnosed with CHARGE syndrome have heterozygous loss-of-function mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7), an ATP-dependent chromatin remodeler. To examine the role of Chd7 in development, a zebrafish model was generated through morpholino (MO)-mediated targeting of the zebrafish chd7 transcript.

View Article and Find Full Text PDF

Entrainment of circadian clocks to environmental cues such as photoperiod ensures that daily biological rhythms stay in synchronization with the Earth's rotation. The vertebrate pineal organ has a conserved role in circadian regulation as the primary source of the nocturnal hormone melatonin. In lower vertebrates, the pineal has an endogenous circadian clock as well as photoreceptive cells that regulate this clock.

View Article and Find Full Text PDF

Patterning of zebrafish and other vertebrate embryos proceeds according to consistent, predictable developmental time courses. Because zebrafish spawn primarily during the first few hours after dawn, many important developmental stages typically occur during the middle of the night. As an automatic, accurate way to fix embryos at these inconvenient times, we have developed the Time Reaper 5-Channel Automatic Liquid Dispenser (TimeR).

View Article and Find Full Text PDF