A better understanding of the genetic regulation of the biosynthesis of microbial compounds could accelerate the discovery of new biologically active molecules and facilitate their production. To this end, we have investigated the time course of genome-wide transcription in the myxobacterium Sorangium sp. So ce836 in relation to its production of natural compounds.
View Article and Find Full Text PDFCaves are considered to be extreme and challenging environments. It is believed that the ability of microorganisms to produce secondary metabolites enhances their survivability and adaptiveness in the energy-starved cave environment. Unfortunately, information on the genetic potential for the production of secondary metabolites, such as polyketides and nonribosomal peptides, is limited.
View Article and Find Full Text PDFIdentification of novel bioactive compounds represents an important field in modern biomedical research. Microorganisms of the underexplored environments, such as deserts, hot springs, oceans, and caves are highly promising candidates for screening such metabolites. Screening for biosynthetic genes is the most effective strategy to characterize bioactivity in a certain environment.
View Article and Find Full Text PDF