Publications by authors named "Laila M Alhaidari"

Unlabelled: The key solution to combat trace metal pollution and keep the environment, ecosystem, animals, and humans safe is earlier and rapid trace metal detection. For all these reasons, we propose in this work the design of a simple electrochemical sensor functionalized with green nanoparticles for electrochemical detection of the fourth most dangerous heavy metal ions namely copper, zinc, lead, and mercury. The green nanoparticles are fabricated by a one-step, consisting of reducing platinum nanoparticles by a natural gum Arabic polymer.

View Article and Find Full Text PDF

To monitor the release of fluorinated drugs from polymeric carriers, a novel F MRI enzyme-responsive contrast agent was developed and tested. This contrast agent was prepared by conjugation of 5-fluorouracil (5-FU) to hyperbranched poly(,-dimethylacrylamide) (HB-PDMA) via an enzyme-degradable peptide linker. Due to the different molecular sizes, the release of 5-FU from the 5-FU polymer conjugate resulted in a sufficiently substantial difference in spin-spin F NMR/MRI relaxation time that enabled differentiating between attached and released drug states.

View Article and Find Full Text PDF

This study discloses the development of NiCr LDH, Ag@NiCr LDH, and Pd@NiCr LDH bifunction catalysts using a hydrothermal coprecipitation method followed by sol immobilization of metallic nanoparticles. The structures and morphologies of the synthesized nanocomposites were analyzed using FTIR, XRD, XPS, BET, FESEM-EDX, and HRTEM. The catalytic effectiveness of the samples was evaluated by tracking the progression of NaBH-mediated nitrobenzene (NB) reduction to aniline and CO oxidation using UV-visible spectrophotometry and an infrared gas analyzer, respectively.

View Article and Find Full Text PDF

To protect consumers from risks related to overexposure to sulfadiazine, total residues of this antibacterial agent in animal-origin foodstuffs not exceed international regulations. To this end, a new electrochemical sensor based on a molecularly imprinted polymer nanocomposite using overoxidized polypyrrole and copper nanoparticles for the detection of sulfadiazine is elaborated. After optimization of the preparation of the electrochemical sensors, their differential pulse voltammetric signal exhibits an excellent stability and reproducibility at 1.

View Article and Find Full Text PDF