It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems.
View Article and Find Full Text PDFMAPK pathway sparkles with RTK activation, passes through subsequent downstream RAS-RAF-MEK-ERK signaling cascades, with consequent direct and indirect CDK4/6 signaling activation, and ends with cell survival, division, and proliferation. However, the emergence of anomalies such as mutations or overexpression in one or more points of the pathway could lead to cancer development and drug resistance. Therefore, designing small inhibitors to strike multitudinous MAPK pathway steps could be a promising synergistic strategy to confine cancer.
View Article and Find Full Text PDFIt is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers.
View Article and Find Full Text PDFThe failure of chemotherapy in the treatment of carcinoma is mainly due to the development of multidrug resistance (MDR), which is largely caused by the overexpression of P-glycoprotein (P-gp/ABCB1/MDR1). Until recently, the 3D structure of the P-gp transporter has not been experimentally resolved, which restricted the discovery of prospective P-gp inhibitors utilizing techniques. In this study, the binding energies of 512 drug candidates in clinical or investigational stages were assessed as potential P-gp inhibitors employing methods.
View Article and Find Full Text PDFSirtuin 2 (SIRT2) is a member of the sirtuin protein family, which includes lysine deacylases that are NAD-dependent and organize several biological processes. Different forms of cancer have been associated with dysregulation of SIRT2 activity. Hence, identifying potent inhibitors for SIRT2 has piqued considerable attention in the drug discovery community.
View Article and Find Full Text PDFIt has long been known that inorganic nanoparticles (NPs) can interact with biological macromolecules and show a wider range of biomedical characteristics, including antibacterial, anticancer and antioxidant effects, which cannot be mimicked by their bulky counterparts. It is of great importance in their biomedical applications to study DNA damage in bacterial and cancer cells to develop biocompatible therapeutic nano-platforms derived from inorganic NPs. Therefore, to determine how DNA interacts with inorganic NPs serving as therapeutic agents, thermodynamic and structural studies are essential for an understanding of those mechanisms, thereby allowing for their modulation and manipulation of nano-bio interface.
View Article and Find Full Text PDFRecently, nanomedicine had the potential to increase the delivery of active compounds to specific cell sites. Nano-LDL particles are recognized as an excellent active nano-platform for cancer-targeted delivery. Loading of therapeutic agents into nano-LDL particles achieved by surface loading, core loading, and apolipoprotein-B100 interaction.
View Article and Find Full Text PDFCancer is a leading cause of death worldwide and affects society in terms of the number of lives lost. Current cancer treatments are based on conventional chemotherapy which is nonspecific in targeting cancer. Therefore, intensive efforts are underway to better target cancer-specific cells while minimizing the side effects on healthy tissues by using LDL particles as active drug delivery vehicles.
View Article and Find Full Text PDFThe repurposing strategy of converting nimesulide from an anti-fever drug to an anti-cancer agent by modifying its main structure targeting HSP27 is gaining great attention these days. The goal of this study focuses on synthesizing a new nimesulide derivative with new ligands that have biological anti-cancer activities in different cancer models using the in-vitro assay. Nimesulide derivative L1 was synthesized, characterized by 1H NMR, 13C NMR, FTIR, melting point, mass spectra, and TGA analysis.
View Article and Find Full Text PDFThe P-glycoprotein (P-gp/ABCB1) is responsible for a xenobiotic efflux pump that shackles intracellular drug accumulation. Additionally, it is included in the dud of considerable antiviral and anticancer chemotherapies because of the multidrug resistance (MDR) phenomenon. In the search for prospective anticancer drugs that inhibit the ABCB1 transporter, the Natural Product Activity and Species Source (NPASS) database, containing >35,000 molecules, was explored for identifying ABCB1 inhibitors.
View Article and Find Full Text PDFProtein oligomerization is involved in the progression of Alzheimer's disease (AD). In general, a particle that can accelerate protein oligomerization should be considered a toxic material. Several studies reported the progress of nanoparticles (NPs) such as copper oxide (CuO) in biomedical platforms, however, they may have the ability to promote the protein oligomerization process.
View Article and Find Full Text PDFThe main protease (M) is a potential druggable target in SARS-CoV-2 replication. Herein, an in silico study was conducted to mine for M inhibitors from toxin sources. A toxin and toxin-target database (T3DB) was virtually screened for inhibitor activity towards the M enzyme utilizing molecular docking calculations.
View Article and Find Full Text PDFAlzheimer's disease (AD) is known as one of the most common forms of dementia, and oligomerization of amyloid β (Aβ) peptides can result in the onset of AD. Tin oxide nanoparticles (SnO NPs) showed several applications in biomedical fields can trigger unwanted interaction with proteins and inducing protein aggregation. Herein, we synthesized SnO NPs via the hydrothermal method and characterized by UV-visible, XRD, FTIR, TEM, and DLS techniques.
View Article and Find Full Text PDF