Publications by authors named "Laila Gannoun Zaki"

uses numerous strategies to survive and persist in the intracellular environment of professional phagocytes, including modulation of the SUMOylation process. This study aims to understand how alters host SUMOylation to enhance its intracellular survival in professional phagocytes. Our results indicate that strain Newman utilizes PtpA-driven phosphorylation to decrease the amount of SUMOylated proteins in murine macrophages to facilitate its survival in this immune cell type.

View Article and Find Full Text PDF

possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model.

View Article and Find Full Text PDF

is a commensal bacterium that causes severe infections in soft tissue and the bloodstream. During infection, manipulates host cell response to facilitate its own replication and dissemination. Here, we show that significantly decreases the level of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-phagocytosis.

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that host-pathogen interactions, particularly in hospital settings, are greatly influenced by phosphatase regulation, highlighting a continued public health threat.
  • The study specifically investigated the low-molecular weight phosphatase PtpB and how its deletion in strain SA564 decreased the bacterium's ability to survive against macrophages and affected bacterial loads in animal models.
  • PtpB's activity was found to be impacted by oxidative stress, and it plays a significant role in regulating genes related to oxidative stress adaptation and bacterial infectivity during host interactions.
View Article and Find Full Text PDF

The intracellular bacterial pathogen is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system-mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host-pathogen interactions.

View Article and Find Full Text PDF

Due to the antibiotic resistance crisis, novel therapeutic strategies need to be developed against bacterial pathogens. Hydrophobic bacterial peptides (small proteins under 50 amino acids) have emerged as regulatory molecules that can interact with bacterial membrane proteins to modulate their activity and/or stability. Among them, the Salmonella MgtR peptide promotes the degradation of MgtC, a virulence factor involved in Salmonella intramacrophage replication, thus providing the basis for an antivirulence strategy.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic bacteria use signaling proteins to adapt and survive in their host, often altering the host's immune response.
  • Recent findings show that a specific protein, PtpA, plays a crucial role in the bacteria's ability to survive within macrophages and influence infection.
  • PtpA was found to interact with various host proteins, notably coronin-1A, which becomes phosphorylated during infection, indicating a connection between PtpA function and the host's cellular processes.
View Article and Find Full Text PDF

Emerging antibiotic resistance in pathogenic bacteria like sp., poses a threat to human health and therefore calls for the development of novel antibacterial strategies. We have recently discovered that bacterial membrane peptides, such as KdpF, possess anti-virulence properties when overproduced in pathogenic bacterial species.

View Article and Find Full Text PDF

Background: The MgtC virulence factor has been proposed as an attractive target for antivirulence strategies because it is shared by several important bacterial pathogens, including Salmonella enterica and Mycobacterium tuberculosis (Mtb).

Aim: A natural antagonistic peptide, MgtR, which interacts with MgtC and modulates its stability, has been identified in Salmonella, and we investigated its efficiency to target MgtC in another pathogen.

Materials & Methods: We evaluated the interaction between Salmonella MgtR peptide and the Mtb MgtC protein using an in vivo bacterial two-hybrid system and we addressed the effect of exogenously added synthetic MgtR and endogenously expressed peptide.

View Article and Find Full Text PDF

Due to the emergence of methicillin-resistant strains, Staphylococcus aureus has become as major public-health threat. Studies aimed at deciphering the molecular mechanism of virulence are thus required to identify new targets and develop efficient therapeutic agents. Protein phosphorylations are known to play key regulatory functions and their roles in pathogenesis are under intense scrutiny.

View Article and Find Full Text PDF

MgtC is a virulence factor involved in intramacrophage growth that has been reported in several intracellular pathogens, including Mycobacterium tuberculosis and Salmonella enterica serovar Typhimurium. MgtC participates also in adaptation to Mg2+ deprivation. Herein, we have constructed a mgtC mutant in Mycobacterium marinum to further investigate the role of MgtC in mycobacteria.

View Article and Find Full Text PDF

Membrane peptides appear as an emerging class of regulatory molecules in bacteria, which can interact with membrane proteins, including transporters and sensor kinases. The KdpF peptide, which is cotranscribed with kdpABC genes and regulated by the KdpDE two-component system, is supposed to stabilize the KdpABC potassium transporter complex but may also exhibit unsuspected regulatory function(s). The mycobacterial KdpF can interact with the KdpD histidine kinase, and kdpF overexpression has been shown to reduce intramacrophage replication of Mycobacterium bovis BCG.

View Article and Find Full Text PDF

Mycobacterium marinum is a waterborne pathogen responsible for tuberculosis-like infections in ectotherms and is an occasional opportunistic human pathogen. In the environment, M. marinum also interacts with amoebae, which may serve as a natural reservoir for this microorganism.

View Article and Find Full Text PDF

Membrane peptides appear as an emerging class of regulatory molecules in bacteria, which can interact with membrane proteins, such as sensor kinases. To date, regulatory membrane peptides have been completely overlooked in mycobacteria. The 30 amino-acid-long KdpF peptide, which is co-transcribed with kdpABC genes and regulated by the KdpDE two-component system, is supposed to stabilize the KdpABC potassium transporter complex but may also exhibit unsuspected regulatory function(s) towards the KdpD sensor kinase.

View Article and Find Full Text PDF

Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M.

View Article and Find Full Text PDF

The mechanism by which the antitubercular drug isoxyl (ISO) inhibits mycolic acid biosynthesis has not yet been reported. We found that point mutations in either the HadA or HadC component of the type II fatty acid synthase (FAS-II) are associated with increased levels of resistance to ISO in Mycobacterium tuberculosis. Overexpression of the HadAB, HadBC, or HadABC heterocomplex also produced high-level resistance.

View Article and Find Full Text PDF

Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the main membrane phospholipids (PLs) of Plasmodium parasites and can be generated by the de novo (Kennedy) CDP-choline and CDP-ethanolamine pathways and by the CDP-diacylglycerol dependent pathway. The Kennedy pathways initiate from exogenous choline and ethanolamine involving choline kinase (CK) and ethanolamine kinase (EK), followed by the choline-phosphate cytidylyltransferase (CCT) and ethanolamine-phosphate cytidylyltransferase (ECT) that catalyse the formation of CDP-choline and CDP-ethanolamine. Finally, in Plasmodium, PC and PE are apparently synthesized by a common choline/ethanolamine-phosphotransferase (CEPT).

View Article and Find Full Text PDF

Cytidine diphosphate diacylglycerol synthase (CDS) diverts phosphatidic acid towards the biosynthesis of CDP-DAG, an obligatory liponucleotide intermediate in anionic phospholipid biosynthesis. The 78kDa predicted Plasmodium falciparum CDS (PfCDS) is recovered as a 50 kDa conserved C-terminal cytidylyltransferase domain (C-PfCDS) and a 28kDa fragment that corresponds to the unusually long hydrophilic asparagine-rich N-terminal extension (N-PfCDS). Here, we show that the two fragments of PfCDS are the processed forms of the 78 kDa pro-form that is encoded from a single transcript with no alternate translation start site for C-PfCDS.

View Article and Find Full Text PDF

Malaria, a disease affecting humans and other animals, is caused by a protist of the genus Plasmodium. At the intraerythrocytic stage, the parasite synthesizes a high amount of phospholipids through a bewildering number of pathways. In the human Plasmodium falciparum species, a plant-like pathway that relies on serine decarboxylase and phosphoethanolamine N-methyltransferase activities diverts host serine to provide additional phosphatidylcholine and phosphatidylethanolamine to the parasite.

View Article and Find Full Text PDF

Introns of Plasmodium falciparum var genes act as transcriptional silencing elements that help control antigenic variations. In transfected episomes, intron silencing of a drug-selectable marker under var promoter control is reversed by the spontaneous deletion of key intron regions. The resulting promoter activation does not affect the transcription of chromosomal var genes.

View Article and Find Full Text PDF

Antigenic variation in Plasmodium falciparum malaria parasites results from switches in expression among members of the multicopy var gene family. This family is subject to allelic exclusion by which particular genes are expressed while the rest of the family remains transcriptionally silent. Evidence from reporter constructs indicates that var gene silencing involves a cooperative interaction between the var intron and an upstream element and requires transition of the parasites through S-phase of the cell cycle.

View Article and Find Full Text PDF