We report that a tetramethylrhodamine-labeled dimer of the cell-penetrating peptide TAT, dfTAT, penetrates live cells by escaping from endosomes with high efficiency. By mediating endosomal leakage, dfTAT also delivers proteins into cultured cells after a simple co-incubation procedure. We achieved cytosolic delivery in several cell lines and primary cells and observed that only a relatively small amount of material remained trapped inside endosomes.
View Article and Find Full Text PDFInt J Physiol Pathophysiol Pharmacol
November 2011
Oxidative damage is implicated in many neurological disorders including ischemic cerebral white matter injury. Oligodendrocyte precursors (preOLs) are intrinsically highly susceptible to various forms of oxidative stress. Here we report the identification of RIP1 kinase as a signaling molecule that mediates arachidonic acid- and glu-tathione depletion-induced oxidative death of preOLs.
View Article and Find Full Text PDF